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ABSTRACT 

 
Meteorological factors can result in air pollution. Some studies have indicated that the leeward 

side effect’s weak flow and subsidence play major roles in inducing high PM10 (particulate matter 
with a diameter of ≤ 10 µm) in southern Taiwan during winter due to topographic blocking. 
However, the results of this research showed that the rapid build-up of high PM10 in Kaohsiung 
city (KHC) during evenings is not completely explained by weak flow and subsidence. In northern 
Taiwan, topographic blocking on northwesterly enhances a significant pressure gradient force 
(PGF) induced strong winds. According to the Froude number (above 0.5), the flow in northern 
Taiwan can pass the terrain, producing subsidence warming in central Taiwan, which is located 
at the leeward side of the northeastern Central Mountain Range (CMR). In addition, strong winds 
blew river dusts in the middle of Taiwan under a stable atmosphere and stimulated density 
current, transporting PM10 to southern Taiwan. A large horizontal pressure gradient was still 
formed in central western Taiwan between the cold flow originating from northern Taiwan and 
the warm flow by subsidence warming. The strong PGF and the interaction between the flow and 
the terrain in northern Taiwan should favor the density current. After PM10 was transported into 
KHC efficiently in a short time by the density current, the local effect of weak rear flow and 
subsidence in KHC enhanced and maintained PM even more than it did in central Taiwan. 
 
Keywords: PM10, Density current, Inversion, Pressure gradient force 
 

1 INTRODUCTION 
 

Due to growing economic activities in Taiwan, air pollution has become a serious issue. 
Airborne-suspended particulate matter (PM) is an important marker of poor air quality in Taiwan. 
PM has seasonal and daily variation due to meteorological factors (Alizadeh Choobari et al., 2016;  
Mobarak Hassan and Alizadeh, 2022; Ali et al., 2015; Xing and Sun, 2022), such as atmospheric 
planet boundary layer (PBL) and circulation (Alizadeh Choobari et al., 2012; Hsieh et al., 2022; 
Hsu and Chen, 2019; Soleimanpour et al., 2023; Sun et al., 2019, 2021). High PM occurs frequently 
between late fall and mid-spring, which is related to the Winter Asia Monsoon (WAM) (Zhang et 
al., 2017). Northeasterly winds often occur in northeastern Taiwan during winter when the flow 
is strong enough to pass the Central Mountain Range (CMR) and induce subsidence in Kaohsiung 
city (KHC), located on the leeward side of Taiwan. However, despite the northeasterly winds not 
being strong enough to pass CMR, the large-scale environment still has a high pressure enough 
to induce subsidence over KHC. Such subsidence inversion favors air pollution (Hung and Lo, 
2015; Largeron and Staquet, 2016; Olofson et al., 2009; Silva et al., 2007; Sun et al., 2018; Wallace 
and Kanaroglou, 2009; Xu et al., 2019; Zhang et al., 2009; Zhai et al., 2019). Besides subsidence in 
the leeward side’s effect, the weak rear flow phenomenon occurs as northeasterly winds reach 
CMR due to terrain blocking. In this study, the effect on the leeward side, including weak rear flow 

https://doi.org/10.4209/aaqr.240015
https://aaqr.org/
https://aaqr.org/
https://aaqr.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://aaqr.org/


ORIGINAL RESEARCH 
 https://doi.org/10.4209/aaqr.240015 

Aerosol and Air Quality Research | https://aaqr.org 2 of 21 Volume 24 | Issue 9 | 240015 

and subsidence, is called the “leeward side effect”. It leads to the accumulation of high PM10 (Hung 
et al., 2018; Hsu and Cheng, 2016; Hsu et al., 2016; Hsu and Cheng, 2019; Wang and Chen, 2008). 

In addition, KHC’s high PM10 may be induced by long-range transporting. Many studies showed 
that strong flow could transport PM10 downstream in the atmosphere even for hundreds or 
thousands of kilometers (Duce et al., 1980; Lin et al., 2004, 2005, 2007, 2012; Lin, 2001; Prospero 
et al., 2003; Wuebbles et al., 2007; Wang et al., 2000; Amodio et al., 2011; Wang et al., 2015; 
Wang et al., 2017). Regarding Zhuoshui River (ZSR) dust in Central Taiwan, when WAM is significant, 
strong flow not only blow ZSR dust, but also favor transporting the dust from the bare soil formed 
to the river’s downstream under certain drought atmospheric conditions (Kuo et al., 2010, 2014; 
Lin et al., 2016; Chuang et al., 2016; Kuo et al., 2017; Lin et al., 2018; Weng et al., 2021). The most 
serious event of ZSR’s dust transported southward occurred on November 2, 2009. According to 
the Ministry of Environment (MOENV) report, the dust of ZSR could even affect as far as southern 
Taiwan. Lin et al. (2018) also analysed the ZSR dust event, and found that the strong WAM prevailed 
for more than 30 hours, spreading the ZSR dust downstream to western Taiwan. Hence, high 
PM10 owing to dust is common during late winter and spring in East Asia and Taiwan (Duce et al., 
1980; Chen and Chen, 1987; Wang and Chen, 2008; Shaw, 1980; Parrington et al., 1983; Lin et al., 
2004; Huang et al., 2018). 

Both long-range transport and the leeward effect may cause high PM10 concentrations in KHC. 
However, increasing high PM10 concentrations in just a few hours requires a quantitative analysis of 
the correlation between air pollution, meteorological conditions, and KHC’s geographic environment. 
In the past, much literature has investigated the leeward side’s effect on air pollution in south-
central Taiwan. However, there is almost no literature discussing the long-range transportation 
of suspended particle effects on the rapid accumulation of PM in southern Taiwan. Crouvi et al. 
(2017) pointed out that density current could rapidly transport dust. Density current—also called 
gravity current (Ising et al., 2022; Stancanelli et al., 2018) and often found in nature (Hallworth 
et al., 2001; Birman et al., 2007; Musumeci et al., 2017; Huppert, 1982). A density current is a 
region of dense fluid that moves into an environment of less dense fluid. Density currents can 
occur with sea-breeze fronts, cold fronts, drylines, and can also be associated with an outflow from 
a thunderstorm (Evan et al., 2022; Ising et al., 2022). In some cases, surface cold fronts move at 
speeds faster than the normal component of the wind because the front has the nature of density 
current (Smith and Reeder, 1988; Chen and Hui, 1990). One of the common atmospheric phenomena 
of density flow is cold air damming, which is related to the terrain blocking the cold air (Lagouvardos 
et al., 1988; Smith and Reeder, 1988). In Taiwan, northeasterly winds in winter or cold air behind 
or at the front during summer may be blocked by CMR, thus resulting in significant pressure 
gradient force (PGF), which may trigger the phenomenon of cold air damming (Chen and Hui, 1990; 
Chen and Kuo, 2006). Whether or not the fast-moving speed of density currents contributed to the 
rapid increase in PM10 concentration in KHC is an issue worth exploring. Therefore, this paper aims 
to investigate the conditions for the formation of density current and its effect on the build-up of 
PM10 in southern Taiwan. In particular, it probes into the influence of central Taiwan’s river dust 
on PM10 in KHC through density current and leeward side effects by conducting a case study and 
numerical modelling. Section 2 describes the methodology and the Weather Research & Forecasting 
Model (WRF). Section 3 discusses the effects of density current behaviour associated with leeward 
side effects on PM10 in KHC, and Section 4 presents the conclusions. 

 

2 MATERIALS AND METHODS 
 
2.1 Research Area and Data 

On January 26 and 27, 2018, the synoptic flow was northeasterly around Taiwan. The PM10 on 
the 26th was twofold stronger than on the 27th. The flow speed on the 26th was stronger than on 
the 27th in northern Taiwan, but the flow speed was similar at KHC between these two days. 
Surface meteorological data and sounding, including wind and temperature, were supported by 
the Central Weather Administration (CWA) and the Air Force Meteorological Wing (AFMW). Several 
ambient air quality monitoring stations have been established by the Ministry of Environment 
(MOENV) within the Taiwan area (Fig. 1). In addition, Aerosol Optical Depth (AOD) is one of the  
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Fig. 1. (a) WRF simulation d01; (b) d02, including distribution of terrain; (c) southern Taiwan; (d) central Taiwan 
location of air quality monitoring and weather stations. The abbreviations of the measuring stations are Pengjiayu 
(PJY), Shillin (SL) in Taiepi (TP), Hsinchu (HSZ), Taichung(TC), Changhua (CH), Lunbei (LB), Chiayi (CY), Puzi (PZ), 
Xingying (XY), Kaohsiung city (KHC), Nanzi (NZ), Zuoying (ZY), Qianzhen (QZ), Linyin (LY), Fengshan (FS), Pingtung (PT), 
and Green Island (GI) and Zhuoshui River (ZSR). 

 
most important quantities for aerosols (Chan, 2017; Sabetghadam et al., 2021, 2018). AOD with 
ten-minute and hourly time resolution provided by CWA serves as a measurement for detecting 
dust. 

There is a close relationship between density current and the ability of cold air to climb over 
the mountains. In understanding whether the northeasterly wind has the ability to climb over 
the central mountain range, the Froude number (Fr), which represents the energy that can be 
used for climbing over high hills, can be measured. Fr can be defined as the ratio of the momentum 
energy to potential energy like the relationship shown below: 
 

U
F

NH
=  (1) 
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where 
Fr: Froude number. 
U: Flow speed across the mountain (m s–1). 
N: Brunt-Vaisala frequency (s–1). 
H: Height of mountain (m). 
When Fr ≥ 0.5, it means that the airflow has the ability to climb a mountain. In contrast, when 

Fr < 0.5, it indicates that the airflow cannot climb the mountain. 
When the cold air flow cannot cross the mountain, the cold air stacks up behind the mountain 

to raise the pressure. Consequently, when the cold air pressure gradient accumulates to overcome 
the height of the mountain and crosses the mountain, it produces a fast-moving air flow that 
transports PM southward. The speed of the transport is shown in Eq. (2) (Houze, 1993; Crouvi et 
al., 2017). Density current speed is represented as Ud 
 

1 2

1
dU F gh

ρ ρ
ρ
−

=  (2) 

 
where 

F: Dimensionless densiometric Froude number. 
g: Acceleration due to gravity 
ρ1: Cold air density at Position 1. 
ρ2: Warm air density at Position 2. 
h: the thickness of the gravity current (m). 

 
2.2 WRF Modeling Parameter Setting and Results Verification 

The WRF model was used to simulate meteorological factors from January 26–27, 2018 (China 
Standard Time). The model runs 6 hours as spin-up time. The outermost domain (D1) has a 
horizontal grid of 90 × 90 and a grid spacing of 9 km, which covers southeastern China and Taiwan 
with a domain center point at 25°N, 120°E. Domain 2 (D2), covering the area of southern Taiwan, 
has a horizontal grid of 73 × 73 and a grid spacing of 3 km. The model’s vertical level is 43 and 
initial meteorological fields and boundary conditions were adopted from NCEP FNL Operational 
Global Analysis Data with 1° × 1°-resolution-degree grids for every 6 hours. The common model 
physics options included: WSM5 microphysics scheme (Hong et al., 2004), shortwave radiation 
for Dudhia scheme (Dudhia, 1989), RRTM longwave radiation schemes (Mlawer et al., 1997), 
Kain-Fritsh cumulus scheme (Kain and Fritsch, 1993), the 5-layer thermal diffusion scheme (Dudhia, 
1996) for land surface model (LSM), and YSU PBL scheme (Hong, 2010; Hong et al., 2006), which 
could be useful for air pollution dispersion studies (Boadh et al., 2016). According to Alizadeh 
Choobari et al. (2012), different PBL schemes might have impacted dust transport. This article 
also conducted sensitivity analysis on the Mellor-Yamada-Janjic scheme (MYJ). The correlation 
coefficient between YSU and MYJ in surface temperatures exceeds 95%. Since these two different 
schemes were not sensitive to temperature simulation results in this case, the article only 
analyzed the results of the YSU scheme simulation. 

Quantitative comparisons between WRF and observations were based on the Mean Bias Error 
(MBE), the Mean Absolute Bias Error (MAE), and the Root Mean Square Error (RMSE). The MBE, 
MAE, and RMSE are computed as follows: 
 

( )
1

1 n

MBE M O
n

= −∑  (3) 

 

1

1 n

MAE M O
n

= −∑  (4) 
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n
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 (5) 

 
where M and O represent the modeled and observed values of the variables, respectively, and 
n is the number of data. 

In general, the verification results indicate that the WRF model can simulate the surface observed 
trend in KHC and Pingtung county—Pingtung (PT), Nazi (NZ), Linyin (LY) average (Table 1). The 
model verification was conducted after a six-hour spin-up using the YSU scheme and the simulated 
surface temperature MB was –1.09°C and –1.70°C on January 26 and 27, 2018, respectively, 
which was similar to –1.04°C by Boadh et al. (2016) and –1.88°C by Fekih and Mohamed (2019). 
The simulated surface relative humidity MAE was 8.57% and 8.16% on January 26 and 27, 2018, 
respectively, which was similar than 9.72% by Boadh et al. (2016). The simulated surface wind 
speed RMSE was 2.10 m s–1 and 1.8 m s–1 on January 26 and 27, 2018, respectively, which was 
similar to 2.02 m s–1 by Madala et al. (2015). Notably, the calibration data of WRF models with 
the observations are reasonable. 

This study used model data to estimate the density current speed and air parcel trajectories 
to verify the consistency between the density current and PM10 transport speeds. However, this 
study has its limitations. Due to the wave-like behavior and rapid transport speed of density  

 
Table 1. Statistical evaluation of surface meteorological variables between WRF simulated and 
observation. 

Time 2018 Jan. 26th 2018 Jan. 27th 
statistical comparison MB MAE RMSE MB MAE RMSE 
Temperature (°C) –1.09 1.47 1.73 –1.70 2.50 2.90 
Relative Humidity (%) 6.27 8.57 9.67 8.06 8.16 9.04 
Wind speed (m s–1) 1.62 1.72 2.10 1.85 1.90 1.88 
 Hong et al. (2006) Hariprasad et al. (2014) 
statistical comparison MB MAE RMSE MB MAE RMSE 
Temperature (°C) < 0.5  2–2.5  0.86 1.03 
Relative Humidity (%)    –14.54 14.67 16.18 
Wind speed (m s–1)    0.74 1.1 1.33 
 Madala et al. (2015) Boadh et al. (2016) 
statistical comparison MB MAE RMSE MB MAE RMSE 
Temperature (°C) 0.29  1.67 –1.04 1.56 1.93 
Relative Humidity (%) 2.2  12.75 4.66 9.72 12.41 
Wind speed (m s–1) –1.4  2.02 0.33 0.78 1.04 
 Hung et al. (2018) Fekih and Mohamed (2019) 
statistical comparison MB MAE RMSE MB MAE RMSE 
Temperature (°C) –0.78 2.58 4.18 –1.88  2.76 
Relative Humidity (%)       
Wind speed (m s–1) 2.13 2.49 3.16 –1.18  2.35 
 Tsai et al. (2020) Li et al. (2022) 
statistical comparison MB MAE RMSE MB MAE RMSE 
Temperature (°C) 0.2 0.9  –0.98  3.35 
Relative Humidity (%)    5.99  17.44 
Wind speed (m s–1) 0.5  1.4 2.10  2.62 
 Souza et al. (2023) Kartsios et al. (2024) 
statistical comparison MB MAE RMSE MB MAE RMSE 
Temperature (°C)    –0.09  2.62 
Relative Humidity (%)      14.98 
Wind speed (m s–1) 0.82  2.09   3.9 
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currents, hourly surface observational data cannot fully capture the speed of these currents. In 
the future, high-resolution surface observations and upper-air observational data will be needed 
to conduct a more in-depth analysis of the effects of density currents on PM10 transport. 
 

3 RESULTS AND DISCUSSION 
 
3.1 Synoptic Flow and Terrain Interaction on Kaohsiung’s High PM10  

Fig. 2 shows the weather maps for the islands of Taiwan and its surrounding area, the 1032 mb 
sea level pressure contour reached 30°N of Mainland China at about 0800 LST on January 26, 
2018. The PGF between Taiwan and 30°N of China was significant in inducing a strong northeasterly 
blow toward Taiwan. However, the pressure gradient began to decline after 0800 LST on January 
27, 2018, and the northeasterly wind decreased its strength as well. 

The first potential impact of a northeasterly invasion in Taiwan is producing speedy winds on 
its northeastern part, the frontline for northeasterly blows. Not only was there about a three to 
fourfold difference in the surface wind speeds between northern and southern Taiwan, but the 
cold air also declined its strength while moving southwardly. 

In addition, effects can include creating heavy fugitive dust from dry floodplains of rivers, 
especially during drought seasons (Lin et al., 2018; Kuo et al., 2017; Lin et al., 2016; Kuo et al., 2014, 
2010). Highly speedy winds may also transport air pollutants away from their origins with the 
movement of density current (Crouvi et al., 2017), which is particularly focused on in this study. 

Figs. 3(a) and 3(b) demonstrate PM10 concentration variation patterns detected by two 
represented air quality monitoring stations, Zuoying (ZY) and Fengshan (FS) of KHC, during the 
48 hours from January 26 to 27, 2018. The PM10 concentration variation pattern on January 27, 
2018, was at a “usually high” level and normally peaked near noon (Li et al., 2017). However, the 
PM10 concentration on January 26, 2018, as shown in Fig. 3(a), for this study was kept at a high 
level of about 70–80 µg m–3 from midnight to 1500 LST initially. Subsequently, it was increased 
to a crowning concentration near 180 µg m–3 on the evening of January 26, 2018. PM10 returned 
to its “usually high” concentration after 2200 LST on January 26 and continued decreasing on the 
27th. 

 

  
(a) (b) 

Fig. 2. (a) Sea level pressure and surface wind on January 26, 2018, at a 0800 LST sea level pressure and (b) 27 at 0800 LST. 
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(a) (b) 

  
(c) (d) 

Fig. 3. The time series of PM10 on the 26th (blue line) and the 27th (red dot line) at (a) Zuoying, (b) Fengshan, (c) Shilin, and (d) Lunbei. 

 
KHC’s PM10 concentration was much higher than the PM10 concentration at Shilin (SL) in 

northern Taiwan (Fig. 3(c)). Thus, KHC’s high PM10 concentration was not transported from northern 
Taiwan. Meanwhile, the maximum PM10 concentration in midwestern Taiwan was high—for example, 
that of Lunbei (LB), was above 140–160 µg m–3 at 1400 LST (Fig. 3(d)). The high PM of KHC might 
be related to the leeward side effect. However, LB is located in the ZSR downstream, 15 km south 
of ZSR, where the river dust could transport PM10 downstream, affecting the air quality of LB.  

In establishing the flow fields, the flow field near Green Island (GI) (Fig. 4(a) dot red circle) was 
used as an example to indicate the flow pattern of the northeasterly winds before arriving in 
Taiwan. Fig. 4(b) depicts the wind speeds in the atmosphere above GI up to 2000 m in height, 
which indicates the strongest wind occurring at the position of 700 m above ground with a speed 
of about 17 m s–1 at 0800 LST on January 26, 2018. Until the evening of January 26, the northeasterly 
winds below 1000 m were still significantly high and continued to the evening the next day. At 
0800 LST on January 27, strong winds were found below 700 m in height. It was not until 2000 LST 
on January 27 that the wind speed reduced to less than 8 m s–1. The variation of the wind speeds 
during these two days followed the invasion pathways of the northeasterly blow—that is, the 
northeasterly blow approached Taiwan on the morning of January 26, 2018, and had the highest 
wind speed on the evening of January 26. The wind remained at high speeds until the evening of 
January 27, 2018. 

Based on the values provided by the observational sounding data around the GI and altitudes 
of the southern mountains of CMR, according to (1) for Fr = U/NH, H was about 2000 m, and N 
was equal to 0.01 s–1. The angle between the northeasterly wind direction and the north-south axis 
of the mountain range was about 20–30 degrees on January 26 and 27, 2018. For southeastern 
Taiwan, U was taken using the highest wind speed of 8.5 m s–1 (= 17 m s–1 × sin 30°) for January 26. 
At 0800 LST and 2000 LST on January 27, U values were considered 7.5 m s–1 (= 15 m s–1 × sin 30°) 
and 3.0 m s–1 (= 6 m s–1 × sin 20°), respectively. 
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(a) (b) 

Fig. 4. (a) Observational wind vector at 800–900 m and vertical velocity at the surface on January 26, 2018, at 0800 LST; 
(b) wind profile on January 26 at 0800 LST (black line) and at 2000 LST (red line), on January 27 at 0800 LST (black dash 
line) and at 2000 LST (red dash line) at Green Island (dash red circle) in Fig. 4(a).  

 
The Fr number for southeastern Taiwan during these two days ranged from 0.15 to 0.4 (Table 2). 

This result indicates that the flows were unable to climb over the CMR owing to the Fr number 
below 0.5. Although the northeasterly winds seemed strong, the angle between the wind flow 
direction and the mountain lines was too small to allow the current flows to pass over CMR. 
However, the Fr number of northeastern Taiwan ranged from 0.45 to 0.7 on January 26, which 
could indicate whether the flows were nearly critical to climb over the CMR or not. As the flow 
passed the northeastern mountain and induced subsidence warming, the large temperature 
contrast and pressure gradient from central Taiwan to northern Taiwan increased, such that large 
horizontal pressure contrast would favor the condition of the density current. Although the 
southeastern flow could not pass the mountain, the subsidence over KHC existed owing to the 
large-scale downward motion (Fig. 5). 

The two temperature inversion levels in the atmosphere of southwestern Taiwan on January 
26, 2018, were observed (Fig. 5(a)). The near-ground lower inversion level generally resulted from 
ground radiation effects, which usually more critically inhibit a vertical movement of air pollutants 
in the near-ground atmosphere (Sun et al., 2019; Wallace and Kanaroglou, 2009; Zhang et al., 
2009). Furthermore, the upper inversion level might have resulted from atmospheric subsidence, 
probably due to the invasion of high pressure (Largeron and Staquet, 2016; Xu et al., 2019). 

Table 3 summarizes both positions of inversion levels and PBLH at the PT station on January 26 
and 27, 2018. Based on the observed temperature profiles, the lower inversion level was at about 
300 m above ground, while the upper inversion level was at 650 m above ground at 0800 LST on 
January 26. However, the lower inversion level was further reduced to 250 m above ground, 
while the upper inversion level was raised to 950 m above ground at 2000 LST. In contrast, on 
January 27, the lower inversion level remained below 300 m, while the upper inversion level was 
at about 850 m above ground at 0800 LST. At 2000 LST on January 27, only one inversion level 
above 1000 m was detected, and no lower inversion level was observed. It was found that the 
mixing zone was not high enough to dilute air pollutants in the near-land atmosphere for the two 
days despite the atmospheric temperature structures returning to their usual conditions on the 
evening of January 27. 
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Table 2. Atmospheric characteristics for January 26 and 27, 2018. 

Date 01/26/2018 01/27/2018 
PBLH at Pingtung 0800 LST 2000 LST 0800 LST 2000 LST 
Lower inversion level 300 m 250 m 250 m – 
Higher inversion level 650 m 950 m 850 m > 1000 m 
PBLH 212 m 313m 243 m > 500 m 
Fr on southeast/northeast Taiwan 0.4/0.45–0.7 0.35/0.7 0.35/0.5 0.15/0.37 
Typical PM10 concentration of ZY station 76 µg m–3 129 µg m–3 44 µg m–3 77 µg m–3 
PGY wind speed 15.3 m s–1 13.9 m s–1 10.8 m s–1 7.5 m s–1 
ZY wind speed 2.5 m s–1 3.2 m s–1 1.8 m s–1 1.9 m s–1 
Major causing mechanisms for high-concentrated PM10 PBLH and density current 

 

  
(a) (b) 

Fig. 5. Observational temperature profile (°C) at Pingtung from January 26–27, 2018: (a) the dark line was (a) on the 
26th at 0800 LST, and the red line was on the 26th at 2000 LST; (b) the black line was on the 27th at 0800 LST, and the 
red line was on the 27th at 2000 LST. 

 

3.2 River Dust and Density Current Effect on Kaohsiung’s High PM10 
Table 3 shows the PM10 concentration evolution of selected ambient air quality monitoring 

stations from middle to southern Taiwan on January 26, 2018, which was selected for further 
analysis. Both the highest concentrations of PM10 and its peak time for these stations are tabulated 
and summarized as follows: 250 µg m–3 peaked at 1400 LST in Puzi (PZ), located in the Chiayi 
county, 162 µg m–3 peaked at 1600 LST in Xingying (XY), located in Tainan, and 163 µg m–3 peaked 
at 1800 LST in Quinzhen (QZ) located in KHC. As shown in Fig. 6(a), observations from the air quality 
monitoring stations, including PZ, XY, and QZ, demonstrated a typical long-range transportation 
of PMs. The transportation of air-born particles was of particular concern in this study. 

In terms of possible typical southward transportation pathways for PMs, Changhua (CH) PM10 
was 82 µg m–3 peaked at 1600 LST, was located upstream, while the rest of the three stations 
were located downstream with a position of LB, PZ, and XY. They are separated by the CSR. It was 
found that the wind speed at LB was above 6.5 m s–1 from 0700 LST to 1800 LST on January 26, 
2018 (Table 3), which was strong enough to remove sand dust from drought riverbeds. Therefore, 
we hypothesized that the high-concentrated PM10 at LB might be contributed by the sand dust 
from the nearby river, the CSR in this case. The sandstorm affected LB first and was brought to 
PZ later. It was further transported southwardly to XY and even more southwardly to KHC. 
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Table 3. PM10 peaking time, the maximum hourly average wind speed of the day, the accompanying average wind speed in the 
last ten minutes and gust wind for January 26, 2018. 

First time PM10 rapidly increases 
(doubles in one hour) at LB wind speed ≥ 6.5 m s–1 Peak PM10 concentration 

(µg m–3) 
PM10 peaking time 
on Jan. 26, 2018 

0700 LST 0700–1800 LST 166 1600 LST 

PM10 ≥ 150 µg m–3 of ambient air 
quality monitoring stations 

Maximum hourly average wind speed 
of the day/Average wind speed in the 
last ten minutes/Gust wind 

Peak PM10 concentration 
(µg m–3) 

PM10 peaking time 
on Jan. 26, 2018 

PZ (in CY) 4.8 m s–1/6.0 m s–1/9.3 m s–1 (in CY) PZ 250 1400 LST 
XY (in TN) 4.4 m s–1/5.3 m s–1/13.4 m s–1 (in TN) XY 162 1600 LST 
TN (in TN) 3.9 m s–1/5.2 m s–1/13.4 m s–1 (in TN) TN 305 1600 LST 
ZY (in KHC) 4.3 m s–1/5.1 m s–1/9.3 m s–1 (in KHC) ZY 176 1700LST 
QZ (in KHC) 2.6 m s–1/2.6 m s–1/9.3 m s–1(in KHC) QZ 163 1800 LST 

 

 

 
(a) (b) 

Fig. 6. On January 26 2018 (a) the time series of PM10 (µg m–3) at Puzi (PZ: red ), Xinying(XY: dot purple), and Qianzhen (QZ: dot 
blue) by observation (the number marked on the right side of the measuring station is the PM10 peaking time) and (b) 1600 LST 
hourly average wind field at surface stations (CN, LB, PZ, XY, TN, ZY, QZ) and additional stations as Douliou (DL), Singang (SG), 
Shanhua (SH), Annan (AN). 

 
Notably, the surface wind speed at PZ was only about 5 m s–1. In addition, with about a 116 km 
distance from Chiayi’s PZ to KHC’s QZ, the peak concentration of PM10 for PZ occurred at 1400 LST 
and that for QZ occurred at 1800 LST. If this peak concentration of PM10 in KHC came from Chiayi’s 
PZ, its transmission rate should be higher than 8 m s–1 to arrive in KHC at 1800 LST. However, 
Fig. 6(b) and Table 3 showed that surface hourly wind speed and average wind speed in the last 
ten minutes were lower than those in PM transport speed. For example, the highest wind speed at 
PZ was only 5–6 m s–1. All these findings suggest that the movement of the air parcels transporting 
along the west side of the CMR cannot be captured by surface average winds. According to density 
current wave behavior, only the density current flows have the potential to make the air parcel 
move quickly. 
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However, density current needs high temporal resolution of meteorological measurements to 
capture its characteristics (Evan et al., 2022). High temporal resolution of AOD was analyzed to 
verify the evidence of density current. Fig. 7 showed that in 1100 LST AOD thickness at LB and PZ 
was thicker than that in 0900–1000 LST. The increase in PM10 at LB from 0800–1200 LST was nearly 
three times, which was consistent with the AOD thickening trend during this period. And CY’ AOD 
became significant at 1100 LST (Fig. 7(c)), which was one hour later after LB’s AOD occurred. 
Meanwhile, at 1100 LST the PM10 in PZ (in CY) from 1000 to 1200 LST ranged from 73 µg m–3 to 
186 µg m–3. The relationship between AOD and PM10 was significant, and AOD time evolution 

 
(a)   (b)  

(c)   (d)  

(e)  

Fig. 7. AOD at (a) 0900 LST, (b) 1000 LST, (c) 1100 LST, and (d) 1200 LST and (e) simulated 233 m 
temperature (°C) on January 26, 2018. 
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represented the density current behavior. In addition, the model simulation of CY's temperature 
at 233 meters above the ground showed wave propagation. Both observations and models showed 
that there was a density flow phenomenon in this case. 

Fig. 8(a) shows the surface temperature in Hsinchu (HC) in the north of Taiwan and Chiayi (CY) in 
central-southern Taiwan. Except for a slight rise at noon, the surface temperature in HC continued 
to fall over time. However, in Chiayi, the surface temperature continued to rise after sunrise. The 
horizontal temperature gradient between Chiayi and Hsinchu was above 3°C from 9 a.m. to 5 p.m. 
This surface temperature gradient induced the pressure difference in these two places, reaching 
as high as 3 mb and increasing after 0600 LST (Fig. 8(b)). This gap in the atmospheric pressure 
induced the density difference and might even produce the formation of density current flows 
on the west side of CMR, which would make air-born PMs to move quickly. It was estimated to 
take about 1.5 hours for PMs to be transported through surface winds from LB to PZ with a 
reported wind speed of 8 m s–1 and a distance between them of about 42 km. These PMs would 
keep transporting into Taiwan’s XY. 

According to Eq. (2) in calculating the density current speed, the yielded densities ρ1 and ρ2 
would be 1.2 kg m–3 and 1.184 kg m–3, respectively, since the PZ surface temperature was 19.3°C, 
with a pressure of 1012.4 hPa at 1400 LST and the QZ surface temperature was 24.1°C at 1400 LST 
with a pressure of 1010.7 hPa. The calculated density current flow speed, Ud, ranged from 8 to 
12 m s–1, which depends on whether H varied from 300 m to 600 m, which was near 8 m s–1 and 
was more reasonable for transporting PM10 quickly along the west side of CMR. 

Both peak PM10 concentrations for Chiayi—PZ and KHC—CZ occurred at 1400 LST and 1800 LST, 
respectively. The forward trajectory for air parcel in northeastern Taiwan and the backward 
trajectory for the air parcel of KHC indicate the air flows coming from northern Taiwan (Figs. 9(a), 
9(b)). Hence, when taking a KHC air parcel at 1800 LST as an example, the trajectory moved in 
158 km from the ZSR to KHC for five hours. It was estimated that the backward trajectory position 
at 1300 LST was closely located in ZSR (Fig. 9(b)), and the average traveling velocity from the ZSR 
was as fast as 8 m s–1, which is consistent with the speed of the density current. 

Under a stable atmosphere, as northeasterly reached CMR, and was blocked on the wind side 
of the terrain, and was accumulated to high density of air. This phenomenon formed a significant 
horizontal density gradient and PGF between the leeward and the wind side of the terrain (Fig. 10). 
The density gradient provided the environment of density current, as strong PGF push air flow 
moved southward, under a stable atmosphere, air flow formed density current as shown in Fig. 11. 
Air flow was forced by significant PGF (Fig. 11(a)), the cold air moved southward and was stimulated 
into a density current (Fig. 11(b)). Behind the first cold air, the second cold air was still induced 
by PGF, forming a density current (Figs. 11(c) and 11(d)). In calculating the speed of the density 
current—from 1400 LST to 1600 LST—with the cold air moving above 60 km, the average flow 
speed was about 9–10 m s–1, which was similar to PM10’s transporting speed. 

 

  
(a) (b) 

Fig. 8. The time series of (a) surface temperature at Chiayi (CY) (red line) and Hsinchu (HC) (blue line) and (b) sea level pressure 
difference of Hsinchu (HC) minus Chiayi (CY) on January 26, 2018. 
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(a) (b) 

Fig. 9. The forward trajectory (a) from 0200 LST to 1400 LST on January 26, 2018 (the blue line represents the location of the 
ZSR; the blue dash line represents Fig. 10’s cross-section (35,45)–(55,67)); (b) the backward trajectory from 1800 LST to 1300 
LST on January 26, 2018, and sea level pressure at 1400 LST on January 26, 2018. Brown shading represents the height of the 
terrain, while the purple dotted line represents Fig. 11’s cross-section. 

 

 

 

(a) (b) 
Fig. 10. The simulated (a) surface temperature (°C) and (b) uw circulation and potential temperature in the northeast-southwest 
vertical profile in Fig. 9(a) (35,45)–(55,67) at 0800 LST on January 26, 2018. 
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(a) (b) 

  
(c) (d) 

Fig. 11. The simulated uw circulation and potential temperature in the Y–Z profile in Fig. 9(b) (38,55)–(38,25) at (a) 0800 LST, 
(b) 1400 LST, (c) 2000 LST on January 26, 2018, and (d) 0200 LST on January 27, 2018. Green and yellow arrows represent the 
different flows. 

 
The formation of density currents on the west side of Taiwan requires a significant density 

difference between the north and south of western Taiwan. Fig. 10(b) shows that the cold air in 
the windward area of the mountain ranges was stacked up, and there was warm air owing to 
subsidence inversion (Figs. 12(a) and 12(b)) in the leeward area. Meanwhile, after sunrise, the 
sun heated the air near the ground, resulting in an increase in the temperature in the west of 
central and south of Taiwan. However, in the northern part of Taiwan—owing cold advection of 
the Northeastern Monsoon coupled with the topography of the obstacle—there was no significant 
warming of the northern part of Taiwan, resulting in the case of the north-south temperature 
difference. 

This article shows the conditions for the generation and transport of dust in rivers and the 
process of dust transport to the southern Taiwan. This has some similarities with the process of  
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(a) (b) 

Fig. 12. The simulated (a) sea level pressure (mb), surface wind vector and vertical velocity (cm s–1) at 300 m and (b) LB skew 
logT-P on January 26, 2018, at 1000 LST. Heavy blue arrow represents the wind direction. 

 
Asia dust storms (Chen and Chen, 1987; Parrington et al., 1983; Park et al., 2010; Shaw, 1980; 
Zhang et al., 2018; Zhang et al., 2017). When WAM is significant, strong surface flow and low 
humidity in the lower troposphere over arid areas of China or Taiwan’ river become the most 
favorable conditions for the generation of dust. These potential adverse effects impacts on 
ambient air quality—which may include enhancing transportation of Asian dust or Taiwan river—
particularly concern people living in the southwestern part of Taiwan (Lin et al., 2004; Li et al., 
2017; Park et al., 2010). 

Long-range dust transport in Asia may occur through strong PGF accompanied by WAM. 
However, the PGF between central and southern Taiwan is weak. In calculating the speed by PGF 
acceleration, at 1300 LST the TC sea level pressure is 1016.9 hPa, the CY sea level pressure was 
1016.5 hPa, and the density was 1.2 kg m–3, resulting in an acceleration of 4 × 10–4 m s–2. The 
velocity increase produced by one hour of acceleration was only 1.44 m s–1. The wind speed was 
less than the propagated speed of PM10 in 8–10 m s–1. Therefore, the transmission of dust from 
rivers in central Taiwan to the south is not only caused by PGF. The key process of rapid PMs 
propagation is due to interaction between WAM and CMR to stimulate density current, and 
subsidence inversion kept PM10 trapped near the ground. 

To compare with Sun et al. (2019), who studied the interaction between Beijing's topography 
and cold air, both PGF and inversion play important roles in high PM levels. However, Sun et al. 
(2019) demonstrated that a significant PGF triggers easterly airflow, bringing dust masses to 
Beijing. Our article shows that the rapid increase in PM levels in the southern part of Taiwan was 
due to the formation of density flows in central and northern Taiwan, which then rapidly 
transported dust from the central part to the south of Taiwan. 
 

4 CONCLUSIONS 
 

In this paper, we analyzed the mechanism of density current generation and its possibility of 
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rapidly increasing PM10 in KHC through observational data and the WRF model. A significant PGF 
between northern and central Taiwan induced strong winds that blew river dust in central Taiwan 
and stimulated a density current transporting PM10 southward rapidly. AOD and WRF simulated 
temperature, trajectory provided information about density current behavior, and how the density 
current was formed. Some important findings from this investigation are summarized as follows: 
1. The high PM10 in KHC was caused by long-range transporting. A significant PGF induced strong 

winds that blew river dust in central Taiwan under a stable atmosphere and stimulated a 
density current transporting PM10 to KHC. In calculating the speed of density current, it was 
set to 8 m s–1 to align with the PM’s transporting speed. 

2. The cold air on the windward side accumulates to a high pressure, a large north-south 
horizontal pressure gradient was formed in central western Taiwan between the cold flow 
originating from northern Taiwan and the warm flow by solar heating. As significant PGF push 
the flow, it stimulated a density current. 

3. As cold air formed strong PGF to acclearate northeasterly flow above 10 m s–1, the flow 
passed over the north of CMR, and produced subsidence warming in central Taiwan, located 
on the leeward side of northeastern CMR. 

4. The inversion between central and southern Taiwan traps PM10 near the ground, as the 
density flow was driven, it caused a rapid increase in PM10 in the central and southern Taiwan. 
After PM10 was transported into KH efficiently in a short time by the density current, the local 
effect of weak rear flow and subsidence in KH enhanced and maintained PM even more than 
it did in central Taiwan. 

Although this article applied AOD and WRF simulation results to show density currents rapidly 
transport PM10 southward, we also demonstrated the limitations of observational data. The first 
is lack of high time resolution to catch density current speed, even hurly average wind speed or 
the ten-minute average wind speed. The second is lack of sounding between central and southern 
Taiwan to direct observation on vertical structure of density current. Although some intensive 
observational periods have been held in central and southern Taiwan in recent years, river 
management administration in central Taiwan have spent much efforts to reduce high river dust 
pollution events. However, future work will continue to focus on analysis of PMs events suitable for 
intensive observation periods and model simulation including chemical reaction. By understanding 
the physical process of PMs transmission, to make more reliable predictions of changes in air 
pollution and reduce the damage of high pollution to economic activities. 
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