Álvaro Clemente, Nuria Galindo, Jose F. Nicolás, Javier Crespo, Carlos Pastor, Eduardo Yubero This email address is being protected from spambots. You need JavaScript enabled to view it.

Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202 Elche, Spain

Received: September 14, 2023
Revised: November 3, 2023
Accepted: November 7, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.4209/aaqr.230218  

Cite this article:

Clemente, Á., Galindo, N., Nicolás, J.F., Crespo, J., Pastor, C., Yubero, E. (2023). Local versus Regional Contributions to PM10 Levels in the Western Mediterranean. Aerosol Air Qual. Res. 23, 230218. https://doi.org/10.4209/aaqr.230218


  • The PMF model was used for PM10 source identification at an urban and a mountain site.
  • Seven sources with similar chemical profiles were identified at both sites.
  • At the mountain station the largest sources were regional sources.
  • Traffic was by far the main contributor to PM10 at the urban site, especially in winter.


In this study, PM10 daily samples were collected every day during approximately one month in winter and one month in summer, 2019. Sampling was performed simultaneously at two different locations: an urban traffic site (~80 m a.s.l.) and a regional background station (~1500 m a.s.l.) in the western Mediterranean. The objective of this work was to investigate PM10 sources at both sites in order to determine regional and urban contributions to aerosol levels. Seven factors were obtained at both sites using Positive Matrix Factorisation (PMF): Saharan dust, Aged sea salt, Ammonium sulfate, Nitrate, Road traffic, Local dust and Fresh sea salt. At the urban site, the contribution of vehicle related sources (Road traffic, Nitrate and Local dust) was significantly higher in winter (~80%) than in summer (~60%). The average contribution of Saharan dust to PM10 levels was much larger at the mountain site (33%) than at the urban location (9%), due to the absence of significant anthropogenic emission sources in the vicinity of the regional background sampling station.

Keywords: PM10, PMF, Sources, Regional, Urban, Mountain site

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Call for Papers for the special issue on: "Carbonaceous Aerosols in the Atmosphere"

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.