SUPPLEMENTARY MATERIALS

Monitoring Volatile Organic Compounds in Air Using Passive Sampling: Regional Cross-Border Study between N. Macedonia and Kosovo

Vlaznim Mula1,2, Jane Bogdanov2, Jasmina Petreska Stanoeva2, Lulzim Zeneli1*, Zoran Zdravkovski2

1Faculty of Education, University “Fehmi Agani”, Str. “Ismail Qemali”, n.n. 50000 Gjakova, Kosovo

2Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, North Macedonia

* Corresponding author. lulzim.zeneli@uni-gjk.org (L.Z.); zoran@ukim.edu.mk (Z.Z.)
Fig. S1. The stability of BTEX compounds in atmospheric air (Słomińska et al., 2014).

Highlighting the stability and decomposition times of BTEX compounds (Benzene, Toluene, Ethylbenzene, and Xylenes) is vital for several reasons. It helps predict their atmospheric persistence and assessment of their environmental consequences, notably in the context of ozone and smog formation. A comprehensive understanding of their decomposition times is pivotal for comprehending the transformations of volatile organic compounds (VOCs). In cases where BTEX exhibits extended decomposition times, their potential to endure and influence air quality and atmospheric chemistry over extended periods becomes apparent. This knowledge is essential for shaping emissions control policies and improving air quality, thus safeguarding both human health and the environment.

Method Performance Evaluation

The details for the optimization of the sampling and subsequent analysis have been reported in our previous work (Sofronievskaya et al., 2022). The mass/mass % were calculated from the GC–MS data and the total mass of VOCs adsorbed onto the Radiello® cartridge and GC–MS were within 15% of each other in the same time period.
REFERENCES
