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ABSTRACT 

 
Many studies use machine learning to predict atmospheric pollutant levels, prioritizing accuracy 

over interpretability. This systematic review will focus on reviewing studies that have utilized 
interpretable machine learning models to enhance interpretability while maintaining high accuracy 
for air pollution prediction. The search terms "air pollution," "machine learning," and "interpretability" 
were used to identify relevant studies published between 2011 and 2023 from PubMed, Scopus, 
Web of Science, Science Direct, and JuSER. The included studies were assessed for quality based 
on an ecological checklist for maximizing reproducibility of ecological niche models. Among the 5,396 
identified studies, 480 focused on air pollution prediction, with 56 providing model interpretations. 
Among the studies, 20 methods were identified: 8 model-agnostic methods, 4 model-specific 
methods, and 8 hybrid models. Shapley additive explanations was the most commonly used method 
(46.4%), followed by partial dependence plots (17.4%), both of which are model-agnostic methods. 
These methods identify important atmospheric features, enhancing researchers' understanding and 
making machine learning outcomes more accessible to non-experts. This can enhance prediction 
and prevention of adverse weather events and air pollution, benefiting public health. 
 
Keywords: Air quality prediction, Deep learning, Supervised learning 
 

1 INTRODUCTION 
 

Air pollution has severe global implications for human health, the economy, and the environment. 
Factors like industrial and agricultural activities, urbanization, transportation, and infrastructure 
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contribute significantly to air pollution in urban areas (Zaini et al., 2022). Exposure to air pollutants 
can result in serious health problems, including respiratory issues, lung cancer, and heart disease. 
Studies have established a strong link between air pollution and mortality, with particulate matter 
and sulfur dioxide showing notable correlations (Chen et al., 2019; Yan et al., 2019; O’Brien et 
al., 2023). Air pollution has also been associated with lung function issues in children (Wang et 
al., 2015), increased lung cancer risk (Hart et al., 2015; Puett et al., 2014), and mortality due to 
cardiovascular disease (Chen et al., 2020). Ozone concentrations have been linked to respiratory 
disease, asthma, cardiovascular disease, neoplasms, and other health problems (Li et al., 2021; 
Malig et al., 2016; Malley et al., 2017). 

Monitoring air quality through measurement stations is valuable, but predicting air pollution 
in areas without monitoring stations is crucial for implementing preventive measures. Machine 
learning, a subfield of artificial intelligence, has demonstrated its effectiveness in environmental 
research, allowing for accurate air quality prediction and forecasting (Wu and Lin, 2019). There 
have been numerous studies conducted on developing air quality prediction and forecasting 
models using machine learning to control air pollution. These studies have led to a considerable 
number of reviews and systematic reviews on the application of machine learning in predicting 
air quality. Advanced techniques like decision trees (DT), support vector machines (SVMs), and 
multilayer perceptron (MLP) have been demonstrated for predicting ozone concentrations (Yafouz 
et al., 2021). Deep learning algorithms and various other forecasting algorithms, along with data 
processing, ensemble learning, and metaheuristic optimization methods, have been summarized 
and discussed by Zaini et al. (2022). The commonly used AI-based techniques for air pollution 
forecasting have also been comprehensively reviewed by Masood and Ahmad (2021). 

Although these reviews offer insights into the application of machine learning for air quality 
prediction, none of them discuss the most crucial aspect of interpretability. Interpretability refers 
to the extent to which a human can comprehend the reason behind a decision (Molnar, 2022). 
In the early stages, traditional statistical models such us linear regression and generalized additive 
model (GAM) were primarily used for air pollution prediction modeling, offering good interpretability 
but with lower model accuracy. To enhance accuracy, researchers started adopting more complex 
machine learning techniques like random forest (RF), support vector machines (SVM), and deep 
learning. These methods effectively capture air pollution distribution and improve prediction 
accuracy; however, they sacrifice interpretability and fail to provide explanations for their 
predictions. This presents a significant challenge for decision-makers who require reliable and 
comprehensible information to make informed decisions for air pollution control. 

With the growing interest in interpretable machine learning models in recent years (Molnar et 
al., 2020), researchers have been exploring their application in air pollution predictions, aiming 
to improve interpretability while maintaining high accuracy (Ahmad et al., 2022; Shi et al., 2023; 
Yang et al., 2022b; Jovanovic et al., 2023). Given the increasing interest of policymakers in 
comprehending model decisions and the lack of comprehensive reviews on this topic, there is a 
clear need for a review that summarizes the use of interpretable machine learning models in the 
interpretation and explanation of air pollution predictions. 

The objective of this systematic review is to concentrate on papers that utilize interpretable 
machine learning models for air pollution prediction and forecasting, aiming to improve model 
interpretability while maintaining high model accuracy and to showcase methods for explaining 
the most challenging, uninterpretable models. 
 

2 METHODS 
 
2.1 Protocol and Registration 

This systematic review was conducted in accordance with the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) statement (Page et al., 2021). It was registered 
and published on the international prospective register of systematic reviews (PROSPERO) on 17 
March 2022, with the registration number CRD42022319034, and is accessible via the following 
link: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022319034. 
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2.2 Information Sources 
Our search spanned five databases: Scopus, PubMed, Science Direct, Web of Science, and JuSER, 

the reference system for publications from the jülich research center (JuSER, 2023). To determine 
the search terms, we created a sample set of papers focused on air quality prediction using 
interpretable machine learning. This involved conducting preliminary "scoping searches" on Google 
Scholar and reviewing previous studies and systematic reviews in the field. From these papers, 
we identified key words, synonyms, and related terms. 

 
2.3 Search Strategy 

Our research strategy involved using three main concepts: "air pollution," "machine learning," 
and "interpretability," along with their synonyms and related terms, as search terms. We focused 
on identifying relevant studies published in English that included these terms in the titles, abstracts, 
or keywords. To ensure comprehensive coverage, we limited our search to articles published 
between 2011 and 2022, as the field of interpretable machine learning gained popularity around 
2015 (Molnar et al., 2020). Subject area restrictions such as "Environmental Science," "Engineering," 
and "Computer Science" were applied. A broader strategy was employed in PubMed, Science Direct, 
and JuSER to capture any relevant papers. For completeness, we conducted additional searches 
for studies published between 2022 and 2023 and included them in the review. The details of our 
search strategies are shown in the Supplemental Material, Table S1. 

 
2.4 Eligibility Criteria 

Articles were eligible for inclusion in this systematic review if they interpreted the machine 
learning algorithms used to predict and forecast outdoor air pollution, with a focus on improving 
interpretability while maintaining high accuracy. Inclusion criteria encompassed articles published 
in scientific journals between January 2011 and February 2023, and written in English. Studies 
that used interpretable models with low accuracy or failed to improve interpretability while 
enhancing accuracy were excluded. Additionally, studies without abstracts or those for which the 
full text was unavailable were excluded. 

 
2.5 Selection Process 

Zotero reference manager (Zotero, 2023) was used to organize and detect duplicate references. 
Further duplicates were eliminated during the screening. The first author (AH) screened for 
relevant studies identified by the search, and the second author (IE) checked decisions. Titles and 
abstracts were reviewed, excluding articles that didn't use interpretable machine learning for air 
quality prediction or lacked clear interpretations. Full texts of potentially eligible papers were 
independently reviewed by both authors to determine inclusion. Discrepancies were resolved 
through discussion or with other authors (KK, MK) if needed. Eligible articles were identified using 
the PRISMA flow diagram. 

 
2.6 Data Collection Process and Data Items 

The first author (AH) extracted data from the selected articles, and decisions were checked with 
the second author (IE). Any discrepancies or disagreements regarding relevant data were resolved 
through consensus via discussion between the two, or with involvement from other authors (KK, 
MK) if needed. The selected articles underwent thorough analysis, and the following information 
was extracted from each: reference, study area, air pollutants of interest, sample size, study 
objective, model or approach used for prediction, model performance, interpretation methods, 
and interpretation results. 
 
2.7 Study Risk of Bias Assessment 

To assess bias risk in the included studies, we used an updated ecological checklist by Feng et 
al. (2019). We adapted the checklist by including components to evaluate the title, abstract, results, 
and discussion for minimizing bias risk. Additional components were added to address machine 
learning interpretability. The complete checklist is available in the Supplemental Material, Table S2. 
Each checklist item was answered with 'Yes', 'No', or 'Not Applicable' (NA). The quality of each 
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article was determined based on the number of 'Yes' or 'No' answers. Articles with mostly 'Yes' 
answers were considered high quality, while those with mostly 'No' answers were deemed low 
quality. Articles with an equal number of 'Yes' and 'No' answers were considered medium quality. 
The first author (AH) evaluated study quality, and the second author (IE) checked decisions. Any 
discrepancies or disagreements were resolved through consensus via discussion between the 
two, or with involvement from other authors (KK, MK) if needed. 

 

3 RESULTS 
 
3.1 Study Selection 

We identified 5,396 studies, with 480 of them focused on air pollution prediction using machine 
learning. After removing duplicates and irrelevant studies, we only reviewed 114 studies in full. 
Out of these, 56 studies met our criteria and were included in the review (Fig. 1). 

 
3.2 Study Characteristics 

Out of the 56 studies included in the review, 19 of them focused on making forecasts with or 
without forecasted data, 15 developed models for interpolation and/or extrapolation, 21 studies 

 

 
Fig. 1. PRISMA diagram flow for studies selection. 
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Fig. 2. Distribution of studies by countries. Most of the studies were conducted in China (50.09%) and the USA 
(10.09%), with the rest distributed among various countries in North America, Europe, and East Asia (29.18%). 

 
were regular predictions at monitoring stations, and one study worked on a downscaling problem. 
The studies were done in 16 countries around the world. Twenty-eight of them were done in 
China (50.09%), 6 in the USA (10.09%), 16 in other countries in Nouth America, Europe, and Asia 
(20.09%), and 5 were done in multiple countries from North America, Europe, and East Asia (9.09%). 
However, there is a notable research gap in some regions, including South America, Africa and 
the MENA region. The detailed distribution of the countries is shown in Fig. 2. The studies were 
published between 2018 and February 2023, with most of them being published in 2022 (see 
Supplemental Material, Fig. S1). The most studied pollutants were PM2.5, O3 and NO2, with PM2.5 

being studied in 26 studies, O3 in 15 studies, and NO2 in 7 studies. The characteristics of the 
included studies and the interpretation results are provided in Supplementary Material, Tables S3 
and S4. 

 
3.3 Interpretable Machine Learning 

Machine learning models are categorized as black box or white box. White box models are 
transparent and understandable but often have lower accuracy (Molnar, 2022). In contrast, black 
box models, while more accurate, lack transparency and require explanation methods (Molnar, 
2022). 

Interpretable machine learning encompasses models and methods that make machine learning 
behavior and predictions understandable (Molnar, 2022). These can be classified as model-agnostic 
or model-specific. Model-agnostic methods analyze input-output pairs and can be applied to any 
trained machine learning model (Ribeiro et al., 2016a), while model-specific methods are limited 
to specific model classes (see Fig. 3). 

In our review, we identified 20 methods: 8 model-agnostic methods, 4 model-specific methods, 
and 8 hybrid models. The most commonly used method for interpreting air pollution were 
shapley additive explanations used in 46.4% of the studies, followed by partial dependence plots 
in 17.4% of the studies, both of which are model-agnostic methods. See Fig. 3 for the types and 
Fig. 4 for the distribution of other interpretable machine learning models. 
 

3.3.1 Model-agnostic methods 
Model-agnostic methods can be classified into global and local methods. Global methods 

describe the average behavior of a machine learning model, while local methods explain individual 
predictions to show why the model makes a particular prediction for a specific instance or set of 
instances (Molnar, 2022). Since global interpretation methods describe average behavior, they 
are useful for understanding the general mechanisms in the data or debugging a model. Partial 
dependence plots (PDPs) and shapley additive explanations (SHAP) are frequently used as global 
and local model-agnostic methods, respectively, to explain air pollution predictions. 
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Fig. 3. Types of interpretable machine learning models used in the included studies. 

 

 
Fig. 4. The distribution of the interpretable machine learning models used in the included studies. 

 

Partial Dependence Plot (PDP) 
The partial dependence plot (PDP), also referred to as a PD plot, is a global, model-agnostic 

method that illustrates the marginal effect that one or two features have on the predicted outcome 
of a machine learning model (Friedman, 2001). A PDP can reveal whether the relationship between 
the target and a feature is linear, monotonic, or more complex. Grange et al. (2018), Li and Sun 
(2021), Liu et al. (2021), Ren et al. (2020), and Yang et al. (2022a) utilized the PDP to aid in 
interpretability. Li and Sun (2021) used the PDP to demonstrate the influence of a change in the 
value of an independent variable on the variation of CO2 emissions while holding all other variables 
constant. Yang et al. (2022a) also used the PDP to visualize the complex relationship between 
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satellite-based aerosol products and PM2.5 concentrations. In another study, the PDP was used by 
Grange et al. (2018) to explain the observed trends and relevant physical and chemical processes 
influencing PM10 concentrations. 

 

SHapley Additive exPlanations (SHAP) 
To understand how a machine learning model makes predictions, one approach is to use the 

shapley value (1953) (Shapley, 1953), which is a cooperative game theory method that can show 
how fairly the prediction is split among the input features. However, computing the shapley value 
can be challenging. To make it easier to understand model predictions, Lundberg and Lee (2017) 
introduced SHAP (SHapley Additive exPlanations), a local method that approximates the contribution 
of each feature to the prediction using a linear regression model. One variant of SHAP is Kernel 
SHAP, which trains a linear regression model on samples of the input features to estimate each 
feature's contribution to the prediction. 

There are several methods for visualizing and understanding the contribution of each feature to 
a prediction. Gu et al. (2021), Song et al. (2022), and Wu et al. (2022) have used SHAP explanation 
force plots to evaluate the significance of features for the prediction of NO2, PM10, and PM2.5 

respectively. In these plots, each Shapley value is a force that either increases (positive value) or 
decreases (negative value) the prediction. Additionally, the Shapley values can be combined into 
a global explanation. If we calculate the SHAP values for each instance, we get a matrix with one 
row for each instance and one column for each feature. We can analyze the entire model by 
studying this matrix through various methods, such as the SHAP feature importance plot. Choi et 
al. (2022), Han et al. (2022), Kim et al. (2021), Stadtler et al. (2022), and Zhang et al. (2022) used 
it to average the absolute Shapley values for each feature across the data. These values are then 
represented as global importance factors for predicting pollutants like PM2.5, NO2, O3, SO2, and 
PM10. Another method is the SHAP summary plot was used to combine feature importance with 
feature effects (Alvarez and Smith, 2021; Gu et al., 2022; Han et al., 2022; Kang et al., 2021; Kim 
et al., 2021; Marvin et al., 2022; Nabavi et al., 2021; Ren et al., 2022; Song et al., 2022; Wang et 
al., 2020; Wei et al., 2022; Wu et al., 2022). This plot can give insights into the relationship between 
the feature values and their impact on the prediction in each instance. To see the exact form of 
this relationship, a SHAP dependence plot was used to show the local relationship between the 
selected features and individual estimates of NO2, O3, and PM2.5 (Alvarez and Smith, 2021; Just et 
al., 2020; Nabavi et al., 2021). 

Force plots, importance plots, dependence plots and also SHAP interaction values were used 
by Stirnberg et al. (2021) to show the contribution of each feature to the estimate of PM1.0, and 
to highlight the interactions between the features and their impact on PM1.0. García and Aznarte 
(2020) applied all of these methods, including clustering Shapley values, which clusters Shapley 
values based on their similarity of explanation, to create a plot with several force plots, each 
explaining the prediction of an instance of NO2 concentrations. 

 
Permutation Feature Importance (PFI) 

The permutation feature importance (PFI) method was used by Ren et al. (2020) and by Shi et 
al. (2023) to explain the estimation of O3 and PM2.5 concentrations, respectively, by assessing the 
significance of individual features in different algorithms. PFI works by shuffling the values of a 
single feature while keeping the others constant (Fisher et al., 2018) and measuring the resulting 
drop in model performance. Features that, when permuted, lead to a significant decrease in 
model performance are considered more important, while those with a minimal impact are less 
critical. For a more in-depth practical applications, refer to (scikit-learn, 2023). 

 
Individual Conditional Expectation (ICE) 

Individual Conditional Expectation (ICE) plots are a visualization technique that focuses on 
understanding how the predictions of a machine learning model change for individual data 
instances as a specific feature is altered (Goldstein et al., 2015). It was used by Ren et al. (2020) 
to display the associations between the model prediction of O3 and covariate for each sample. 
ICE plots display one line per instance, showing the relationship between a feature's variation 
and the corresponding change in prediction. This method is particularly useful for revealing 
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heterogeneity in the relationships between features and predictions, especially in the presence 
of complex interactions. 

ICE plots and partial dependence plots differ in their level of detail. PDPs give a general 
overview of how a feature impacts predictions across all instances, while ICE plots delve into the 
individual behavior of each instance (Molnar, 2022). ICE plots help uncover interactions and 
variations in predictions that may be obscured in PDPs, making them valuable for gaining a deeper 
understanding of the model's behavior. 

 
Bootstrapping technique (BS) 

The bootstrapping technique (BS) is a statistical method that estimates the sampling distribution 
of a statistic by repeatedly resampling from the observed data (James et al., 2013). In the context 
of machine learning and feature selection, bootstrapping can be used to assess the importance 
of variables by resampling the dataset and evaluating its impact on model performance. This 
approach provides a robust means of determining which features have the greatest influence on 
a model's predictions. Kleinert et al. (2021) employed this technique to evaluate the effects of 
different input variables on the results of ozone forecasts generated by a deep learning model. They 
accomplished this by randomly selecting one variable at a time, thereby disrupting its temporal 
structure in the input data. Subsequently, the model's performance was evaluated using the 
altered data, and a skill score was calculated to quantify the impact of each variable. 

 
Local Interpretable Model-agnostic Explanations (LIME) 

Local interpretable model-agnostic explanations (LIME) is a machine learning technique used to 
explain predictions made by complex machine learning models in a way that is both interpretable 
and locally faithful (Ribeiro et al., 2016b). Nabavi et al. (2021) used LIME to understand the behavior 
of their machine learning model for specific instances, illustrating the local relationship between 
selected features and individual ozone estimations. 

LIME starts by selecting a specific instance or data point for which you want to explain the 
model's prediction. It generates a dataset of perturbed instances by slightly modifying the selected 
instance. These perturbations may involve making small changes to the features while keeping 
the label constant. The machine learning model that needs explanation is then used to make 
predictions on this perturbed dataset. LIME fits an interpretable, locally weighted model (e.g., 
linear regression) to approximate the behavior of the complex model within the vicinity of the 
selected instance. This local model should be simple and interpretable. The local model provides 
an interpretable approximation of how the machine learning model behaves for the specific 
instance, allowing you to understand the importance of different features and how they contribute 
to the prediction. The coefficients of the local model can be used to assess the importance of 
different features for predicting the instance (Molnar, 2022). 

 
Stability Feature Selection (SFS) 

Stability feature selection (SFS) method was utilized by Meinshausen and Bühlmann (2010) to 
reduce dimensionality and improve estimator performance. It is a method used when dealing 
with high-dimensional and limited training data in statistical modeling. Its primary goal is to select 
the most important features while eliminating noisy ones to enhance model performance and 
generalization. SFS uses L1 regularization and bootstrapping, repeatedly creating random subsets 
of data and applying L1 regularization to select features. Features that are consistently chosen 
across different randomizations are deemed significant. SFS is robust and less sensitive to 
regularization choices, making it effective for feature selection in challenging modeling scenarios 
(Meinshausen and Bühlmann, 2010). 

 
Interaction Strength (IS) 

Interaction strength (IS) or feature interaction (FI) measures the interactions between variables 
in a statistical or machine learning model. It helps to understand how different variables influence 
each other and, in turn, affect the model's predictions (Molnar, 2022). Ren et al. (2020) used 
H-statistics to compute the interaction strength for each variable, explaining O3 predictions, with 
a higher interaction strength value indicating a stronger interaction effect. This can help identify 
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which variable pairs have significant interactions and guide the interpretation of the model's 
results (Friedman and Popescu, 2008). 

 
3.3.2 Model-specific methods 

Model-specific methods are techniques customized to a specific model's needs, addressing its 
unique challenges and optimizing performance (Molnar, 2022). Model-specific methods may 
include algorithms, tools, or strategies that are optimized for a particular modeling context. 

 
Decision Tree-based Ensemble Learning (DTEL) 

Decision tree-based ensemble learning models are a type of machine learning approach that 
combines multiple decision trees to create a more robust and accurate predictive model. Decision 
trees (Holzinger, 2015) are simple models that use binary decisions based on input features, and 
ensemble models utilize several of them to improve predictions. 

While decision tree-based ensemble learning models were once considered non-interpretable, 
they still offer some degree of interpretability by revealing feature importance. Studies have 
utilized them for predicting air pollution. Extreme gradient boosting (XGBoost) was used by Wang 
et al. (2022) to evaluate the importance of each variable, and XGBoost and random forest (RF) were 
used by Coker et al. (2021) to predict fine particulate matter (PM2.5) air pollution. Chen et al. 
(2022) calculated the feature importance while obtaining the distribution of PM2.5 based on extra 
trees (ET). Liu et al. (2021) selected the predictor variables based on gradient boosting decision tree 
(GBDT) to predict PM2.5 and CO concentrations. Finally, Zhai and Chen (2018) generated feature 
importance scores for forecasting and analyzing PM2.5 concentrations using XGBoost and Adaboost, 
and they visually presented the general structure of tree-based models in the form of a decision tree. 

 
Layer-wise Relevance Propagation (LRP) 

Layer-wise relevance propagation (LRP) is a technique that can explain complex deep neural 
networks (Bach et al., 2015). LRP highlights the input features used by the model to make predictions, 
providing the possibility for the model to explain itself. The basic concept of LRP is to assign 
relevance scores to each input, showing the contribution of each neuron input to the network 
output. LRP has been applied to represent the contribution of each input time step in PM2.5 

forecasting by Kim et al. (2022), to identify informative predictors for PM2.5 estimation from 
horizontal observations by Park et al. (2020), and to visualize and analyze the varying correlation 
between traffic density and PM2.5 concentration in different regions by Du et al. (2023). For more 
information on LRP, refer to the works of Bach et al. (2015) and Montavon et al. (2019). 

 
Guided Backpropagation (GB) 

Guided backpropagation (GB) is a technique used in deep learning and neural network 
interpretability to highlight the importance of different input features or regions for a particular 
model's prediction (Springenberg et al., 2014). It is often used in the context of convolutional neural 
networks (CNNs) for image analysis and interpretation. The idea behind Guided Backpropagation 
is to modify the standard backpropagation algorithm used for training neural networks to only 
allow positive gradients to flow backward while setting negative gradients to zero. This means 
that during the backpropagation process, only the paths that increase the activation of a particular 
feature or neuron are considered, and paths that reduce the activation are effectively ignored. 

Steininger et al. (2020) used guided backpropagation to visualize the regions of an input image 
that a neural network is focusing on for NO2 estimation, allowing visualization of which parts of 
the image the model is paying attention to. This helps in understanding what aspects of the input 
data have the most influence on the network's decision. 

 
GNNExplainer 

GNNExplainer is a technique used for explaining the predictions and behaviors of graph neural 
networks (GNNs). Graph neural networks are a class of deep learning models designed for graph-
structured data, and they have gained significant popularity in various domains, including social 
network analysis, recommendation systems, and bioinformatics (Zhou et al., 2020). 

GNNExplainer offers local explanations, revealing why specific nodes are classified as they are 
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and how important edges contribute to decisions Ying et al. (2019). GNNExplainer was utilized 
by Zhou et al. (2022) to identify critical connections in the graph by extracting the most influential 
and important subgraph structures for PM2.5 prediction at each station, thus enhancing transparency. 
GNNExplainer often includes visualizations highlighting influential graph elements, aiding intuitive 
understanding. This tool aligns with broader efforts to make complex models interpretable and 
supports researchers, practitioners, and domain experts in understanding GNN predictions, 
diagnosing issues, and enhancing trustworthiness in GNN applications. 

 
3.3.3 Hybrid interpretable models 

Some studies have developed new interpretable models by incorporating an element of 
explainability into their structure to make them more interpretable. For example, Chen et al. 
(2021) employed a new machine learning model called deep forest (DF), which combines deep 
neural networks with tree models. They utilized the feature importance derived from the deep 
forest model to assess the role of variables in predicting near-ground PM10 concentration. Bonet 
et al. (2022) introduced a post-hoc explanation model called NodeSel, which can be used to 
identify the most closely related nodes to a specific target node by applying both the graph 
structure and air pollution information. This method provides insights into the connectivity of the 
graph and its structure. A self-adaptive deep neural network (SADNN) was developed by (Chen et 
al., 2021) based on the standard deep neural network (DNN). They integrated an attention module 
into the standard DNN to allow the SADNN model to self-adaptively calibrate the relationships 
between predictors and PM2.5 and provide insight into predictor importance. The advantage of 
the SADNN model is that it determines the daily significance of predictors for each grid, which 
differs from decision tree-based ensemble learning models that give overall predictor importance. 
Yan et al. (2021) developed a spatial-temporal interpretable deep learning model (SIDLM) to predict 
PM2.5 concentrations, and Zang et al. (2021) created a tree-based ensemble deep learning model 
(semi-SIDLM) to predict O3 concentrations. Both models added a linear regression component 
into their structure to assess the monthly contribution to atmospheric PM2.5 and O3 levels. Gao 
and Li (2021) proposed a graph-based long short-term memory (GLSTM) model to predict PM2.5 

concentration by introducing an adjacency matrix into the long short-term memory (LSTM) cell. 
They treated all air quality monitoring stations as nodes in a graph and constructed a parameterized 
adjacency matrix based on the connections between these nodes. By examining the obtained 
parameter values of the adjacency matrix, they determined the importance of the relationship 
between the different stations to enhance the interpretability of the model. A new hybrid 
interpretable predictive machine learning (HIP-ML) model was proposed by Gu et al. (2022) for 
PM2.5 forecasting. The HIP-ML structure is constructed with a deep neural network and a non-linear 
auto regressive moving average with exogenous input model. By incorporating the OFR algorithm 
into the HIP-ML model as a feature selection stage, they can determine the significance of each 
feature that the model considers, at specific times. Finally, the spatio-temporal transformer model 
(STTM), developed by Yu et al. (2023), is designed for accurate air quality forecasting at monitoring 
stations. It explaines the factors influencing changes in PM2.5 concentration predictions and 
showcase the model's capability in mapping PM2.5 concentrations resulting from wildfire smoke. 
STTM enhances interpretability by using a hybrid approach that combines spatial, temporal, and 
value embeddings, along with a sparse attention mechanism. This method considers timestamp 
order, station locations, and cross-correlation functions to better understand air quality trends 
and identify hotspots. 
 

4 DISCUSSION 
 
The aim of this review was to identify interpretable machine learning models and explanatory 

methods with the goal of improving model interpretability while maintaining high accuracy for 
predicting air pollution. The study identified a total of 20 methods. Out of these, 8 were model-
agnostic methods, 4 were model-specific methods, and 8 were hybrid models with an element 
of interpretability incorporated into them. The introduction of each method and its application 
in air pollution has been presented in the preceding section. In the following sections, we will 
outline their respective advantages and disadvantages, which are summarized in Table 1. 
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Table 1. Advantages and disadvantages of interpretable machine learning techniques. 

Methods Advantages Disadvantages 
SHapley Additive 

exPlanations (SHAP) 
This method has a solid theoretical basis 

and evenly distributes predictions among 
the feature values. 

Shapley value can assign excessive weight in 
dependent features. 

SHAP may enable misleading explanations, hiding 
biases. 

Shapley value isn't difference in predicted values. It 
reflects feature's contribution to prediction 
differences. 

Partial Dependence Plot 
(PDP) 

PDPs show how one or two uncorrelated 
features influence predictions. 

PDPs often involve up to two features due to human 
visualization limits. 

Missing feature distribution can cause over-
interpretation in PDP. 

Layer-wise Relevance 
Propagation (LRP) 

LRP explains complex neural network 
predictions with input features, 
adaptable to various model architectures 
with diverse data sources. 

Sensitivity to network architecture and 
hyperparameters. 

Permutation Feature 
Importance (PFI) 

PFI gauges impact on model predictions. It 
considers interactions, measuring main 
and interaction effects in importance. 

PFI results vary with evaluation metric choice. 
PFI's randomness may lead to varying results. 
Feature significance depends on model accuracy level. 
Correlation may lower feature importance when 

permuting one. 
Individual Conditional 

Expectation (ICE) 
ICE plots are intuitive, revealing hidden 

relationships. 
ICE plots suit one feature; two can be complex. 
ICE plots may be influenced by feature correlations. 
ICE plots may not display averages; pair with partial 

dependence for completeness. 
Bootstrapping technique 

(BS) 
Assesses input variables without model 

retraining; uses learned model weights. 
It may underestimate variable impact with correlated 

input data. 
Local Interpretable 

Model-agnostic 
Explanations (LIME) 

LIME explains complex model predictions 
with interpretable surrogate models. 

LIME offers user-friendly, layperson-
accessible explanations. 

Challenging scope definition of data instances impacts 
explanation reliability. 

Explanations differ among similar instances, raising 
trust issues. 

Manipulation raises trust and bias concerns in LIME 
explanations. 

Stability Feature 
Selection (SFS) 

SFS improves robustness, handles high 
dimensions, and enhances generalization. 
It simplifies interpretation by focusing on 
essential features. 

SFS has limitations: complexity with large data, 
potential information loss, data quality 
dependency, and limited noise handling. 

Interaction Strength (IS) H-statistic measures interactions well with 
strong theoretical foundation. 

Quantifies explained variance; identifies 
complex higher-order interactions. 

Computationally expensive, unstable results with 
incomplete data points. 

Identifying significant interactions is hard without a 
model-agnostic test.  

Correlated features can lead to misleading results. 
Decision Tree-based 

Ensemble Learning 
(DTEL) 

Offer interpretability by revealing feature 
importance. 

Correlated features may reduce feature significance, 
concealing important predictors. 

Complex structure due to multiple trees in 
visualization. 

Guided Backpropagation 
(GB) 

Aids neural network understanding, 
highlighting relevant data regions. 

Faces gradient saturation in deep layers, hindering 
feature highlighting. 

It may not fully explain network decisions due to 
complex architecture. 

GNNExplainer Improves GNN interpretability with local 
explanations and graph visualizations. 

It may cause computational complexity, slowing down 
analysis. 

GNNExplainer primarily suits GNNs, with limited 
applicability elsewhere. 
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4.1 SHapley Additive exPlanations (SHAP) 
The most commonly used model-agnostic method for interpreting air pollution prediction in 

the studies included in this review was shapley additive explanations. This method may be the 
only legally compatible method among the local explanatory methods because it has a solid 
theoretical basis in game theory (Molnar, 2022). This method fairly distributes the prediction 
among the feature values (Lundberg and Lee, 2017). In addition to Kernel SHAP, there are other 
forms of SHAP presented by Lundberg and Lee (2017), such as Tree SHAP or Deep SHAP, which 
are used for tree-based models and deep neural networks, respectively. However, Kernel SHAP 
is the only one that is universal and can be applied to any type of machine learning model. 

A limitation of the Shapley value is that if features are dependent or correlated, it can assign 
excessive weight to unlikely data points (Molnar, 2022). The Shapley value of a feature can be 
prone to misinterpretation. It does not represent the difference in predicted values when removing 
the feature from the model's training. Rather, the Shapley value indicates the contribution of the 
feature value to the difference between the actual prediction and the mean prediction, given the 
current set of feature values (Molnar, 2022). Another challenge is that SHAP can allow the creation 
of intentionally misleading explanations, potentially concealing biases (Slack et al., 2020). While this 
may not concern the data scientist generating the explanations, recipients of SHAP interpretations 
may question their credibility (Molnar, 2022). 

 

4.2 Partial Dependence Plot (PDP) 
Partial dependence plots (PDPs) are ideal for representing how a feature affects prediction on 

average, as long as the feature being calculated is not correlated with other features (Molnar, 
2022). When features are uncorrelated, a PDP displays how the average prediction in a dataset 
change as a particular feature changes. The maximum number of features that can be included 
in a PDP is two, as it is difficult for humans to imagine a world with more than three dimensions. 
Additionally, the distribution of the features in the PDP is not displayed, which may result in over-
interpretation of regions with little to no data (Molnar, 2022). This issue can be easily solved by 
showing indicators of the data points on the x-axis or by adding a histogram to the plot. 

 
4.3 Layer-wise Relevance Propagation (LRP) 

LRP can be used to explain the predictions of complex modern neural networks in terms of 
input features by propagating the prediction backwards through the network. LRP can be applied 
to various neural network model architectures, including inputs such as images (Bach et al., 2015), 
videos (Kim et al., 2022), time series (Anders et al., 2019), or text (Arras et al., 2017). This makes 
it applicable to a large number of practical scenarios that require an explanation of air quality 
prediction, such as using satellite images or time series observations that represent the movement 
and transport of atmospheric compositions in the air. 

 
4.4 Permutation Feature Importance (PFI) 

The feature importance quantifies how much a model's error increases when a feature is 
removed, providing insight into each feature's impact on predictions. It's a tool applicable to 
various algorithms (scikit-learn, 2023). PFI automatically takes into account interactions with other 
features, which can result in both the main feature's effect and interaction effects being included 
in importance measurements (Molnar, 2022). Notably, it avoids model retraining, saving time 
when assessing feature importance within a fixed model context, thus preventing variations and 
misleading conclusions (Molnar, 2022). 

Permutation feature importance (PFI) has certain disadvantages. The choice of evaluation metric 
affects PFI results, as it's linked to the model's error (Molnar, 2022). Therefore, using different 
metrics may yield distinct rankings of feature importance. PFI introduces randomness through 
shuffling, and results may vary when repeated (Molnar, 2022). Features that may seem insignificant 
in a low accuracy model can be significant in a high accuracy model. Therefore, it's essential to 
understand the model's effectiveness before assessing feature importance (scikit-learn, 2023). 
Furthermore, when a feature is permuted and correlated with another in the dataset, the model 
can still access the permuted one through its correlated feature. This situation may lead to low 
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importance scores for both features, even if they are actually important (scikit-learn, 2023). One 
approach to address this is by clustering the correlated features and retaining one feature from 
each cluster. 

 
4.5 Individual Conditional Expectation (ICE) 

Individual Conditional Expectation plots are highly intuitive, as they display individual predictions 
for each instance when a specific feature is varied. They are particularly effective at revealing 
heterogeneous relationships that may be concealed by partial dependence plots (Molnar, 2022). 

ICE plots have limitations. They are best suited for visualizing one feature at a time, as 
representing two features would create complex overlays and make the plot difficult to interpret. 
Additionally, like partial dependence plots, ICE plots can be affected by feature correlations, 
potentially leading to invalid data points. Drawing many ICE curves can clutter the plot, making 
it challenging to interpret. To address this, transparency or plotting a sample of lines can be 
applied. ICE plots may not readily show the average, but this can be resolved by complementing 
ICE with partial dependence plots for a more comprehensive view (Molnar, 2022). 

 
4.6 Bootstrapping technique (BS) 

Bootstrapping technique assesses the impact of input variables without requiring model 
retraining, using the same model weights learned from the full dataset for the evaluation (Kleinert 
et al., 2021). Preserving the input variable distribution in bootstrapping helps prevent adverse 
effects when correlated variables are present. However, Kleinert et al. (2021) pointed out that 
this method may underestimate the impact of a specific variable in the case of correlated input 
data, as the model tends to focus on the dominant feature, as observed with ozone in their study. 
It's important to note that this analysis solely evaluates the behavior of their deep learning model 
and does not assess the real-world impact of these variables on actual ozone formation in the 
atmosphere. 

 
4.7 Local Interpretable Model-agnostic Explanations (LIME) 

The key advantage of local interpretable model-agnostic explanations is its ability to explain 
machine learning model predictions using simple and interpretable surrogate models, even when 
the underlying model is complex. This interpretability remains consistent if you switch the underlying 
model (Ribeiro et al., 2016b). LIME provides concise and user-friendly explanations, making it 
suitable for scenarios where laypersons need to understand model decisions (Ribeiro et al., 2016b). 

However, defining the appropriate scope of data instances for explanation purposes remains 
a challenge, making it difficult to ensure reliable explanations (Molnar, 2022). LIME use of a Gaussian 
distribution for sampling to create perturbed instances. This can neglect feature correlations, 
resulting in potentially unrealistic data points that affect the quality and validity of local explanations 
(Molnar, 2022). Explanations are often unstable, varying between similar instances, making trust 
an issue (Alvarez-Melis and Jaakkola, 2018). Additionally, LIME explanations can be manipulated, 
raising concerns about their trustworthiness and potential biases. This underscores the importance 
of using LIME in machine learning interpretability with caution and critical evaluation (Slack et al., 
2020). 

 
4.8 Stability Feature Selection (SFS) 

Stability feature selection offers robust feature selection, even in non-ideal conditions. It 
handles high-dimensional data effectively and enhances model generalization, reducing overfitting. 
SFS simplifies interpretation by focusing on essential features. It's also less sensitive to regularization 
choices, ensuring ease of implementation (Meinshausen and Bühlmann, 2010). 

SFS drawbacks include computational complexity with large datasets, potential information 
loss due to the exclusion of valuable features, data quality dependency, and limited noise handling, 
making it less effective when noise follows a pattern. 

 
4.9 Interaction Strength (IS) 

The H-statistic for interaction strength measures interactions effectively based on strong 
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theoretical foundation. It quantifies variance explained and can identify complex higher-order 
interactions (Molnar, 2022). 

While informative, the interaction H-statistic has some limitations. It's computationally expensive, 
and its results can be unstable due to sampling when we do not use all data points. Determining 
the significance of an interaction is challenging since a statistical test for this purpose is not yet 
available in a model-agnostic version. In cases where features are correlated, the statistic may 
produce misleading results (Molnar, 2022). It's most useful when not dealing with pixel inputs, 
and the assumption of feature independence is crucial for accurate results. 

 
4.10 Decision Tree-based Ensemble Learning (DTEL) 

Decision tree-based ensemble learning models, previously considered non-interpretable 
methods, still offer a degree of interpretability by providing insights into feature importance. 

However, the presence of correlated features in the tree-based may result in a decrease in 
significance, which may hide some important features that impact prediction. Moreover, they 
can be sensitive to noise in the data, which can lead to instability in feature importance rankings 
(Molnar, 2022). Additionally, while interpreting a decision tree-based ensemble model offers a 
means to show the average importance of each feature across different samples, the visualization 
of its structure becomes more complicated due to the use of multiple trees (Natekin and Knoll, 
2013). 

 
4.11 Guided Backpropagation (GB) 

Guided backpropagation provides a visual and interpretable way to understand why a neural 
network made a particular prediction, especially in image classification tasks. It effectively highlights 
regions of input data that are most relevant to the network's decision, which can be crucial for 
understanding the model's behavior (Springenberg et al., 2014). However, GB can suffer from 
gradient saturation, where gradients become very small in deep layers, making it difficult to 
highlight features effectively. In some cases, GB may not provide a complete understanding of a 
network's decision, as it can be limited by the complexity of the network architecture. 

 
4.12 GNNExplainer 

GNNExplainer enhances Graph Neural Network (GNN) interpretability by offering local 
explanations for node classifications and their dependence on neighboring elements (Ying et al. 
2019). It reveals critical graph connections, highlighting essential data relationships, and includes 
visualizations to aid in understanding influential components. 

However, GNNExplainer can introduce computational complexity, especially for large and 
complex graphs, potentially slowing down the overall analysis process. It's worth noting that 
GNNExplainer is primarily designed for GNNs, and its applicability to other machine learning models 
is limited. 

 
4.13 Limitations of the Evidence Included in the Review 

The overall judgment of the studies included in this review is based on the checklist for 
maximizing the reproducibility of ecological niche models. All of the articles were rated as high 
quality, except for three which were rated as medium quality. The medium-rated articles were a 
result of their lack of inclusion of essential elements concerning the characteristics of the data, 
such as a comprehensive data description. While the majority of articles being rated as high quality, 
many of them did not mention the version or the software of the algorithm used. Additionally, a 
significant number of studies failed to report whether there were any missing values, outliers, 
errors, or spatial uncertainties in the data, and the methods for addressing these issues. 

Most of the methods have been applied to explain the current predictions using the current 
input, with only a few focusing on explaining predictions for future air pollution. One such method 
is LRP, which assigns scores to inputs in sequential neural network models (e.g., RNN, LSTM, GRU) 
and helps identify impactful features from past time periods for forecasting air pollutants. Kernel 
SHAP has limitations in assigning feature importance in air pollution forecasting (Marvin et al., 
2022; Nabavi et al., 2021). However, Deep SHAP (García and Aznarte, 2020; Song et al., 2022) is 
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Fig. 5. Interpretable machine learning methods for air pollution prediction. 

 
utilized to assign importance to inputs in sequential neural network models for air pollution 
forecasting. GNNExplainer Zhou et al. (2022) is used to explain forecasting but is applicable only 
to GNN models. Other methods, like Bootstrapping (Kleinert et al., 2021), the introduction of 
adjacency matrix, and OFR algorithm in hybrid models (Gao and Li, 2021; Gu et al., 2022), uncover 
feature effects in air pollution forecasting. They illustrate the relationship between monitoring 
stations and feature importance at specific times. 

Only Steininger et al. (2020) employed satellite images for air pollution prediction. They used 
guided backpropagation (GB) as a model-specific method and found that the model prioritizes 
motorways, trunk roads, and primary roads in map images to predict NO2 concentration. This 
method can be extended to analyze different satellite images from various instruments, identifying 
regions impacting air pollution in specific areas. For details on the methods used for each objective 
task, please refer to Fig. 5. 

 
4.14 Strengths and Limitations of this Review 

This systematic review is the first to discuss interpretable machine learning models aimed at 
enhancing model interpretability while maintaining high accuracy in predicting air pollution. It 
serves as a valuable reference for policy-makers, scientists, and researchers in identifying factors 
contributing to air pollution and developing effective interventions for improved public health. 
However, our review has limitations: excluding gray literature increases publication bias risk, 
limited inclusion of studies from five databases may miss relevant research, and the focus is solely 
on air pollution prediction. Expanding the review to include other application areas would identify 
additional relevant tools. 

 
4.15 Implications of the Results and Future Research 

Interpretable machine learning in atmospheric science offers a valuable bridge between data-
driven insights and informed decision-making. These techniques identify the most significant 
features, such as temperature, humidity, and wind speed, used by models for predictions. This 
not only assist researchers in gaining insights into the crucial atmospheric variables impacting air 
pollution but also influences outcomes like weather patterns or climate.  

Machine learning models often acquire biases from training data, leading to potential 
discrimination against specific sample groups. Interpretability helps identify and address bias in 
models. For instance, a pollution-detection model may unfairly target regions already burdened 
with high pollution levels. This bias could stem from shifting emission-prediction relationships or 
similar weather conditions to low-pollution areas. The goal is to predict pollution peaks specifically 
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in areas where genuine increases occur. Interpretability helps uncover the root causes of 
predictions, elucidating the crucial atmospheric variables that influence pollution levels. In the 
context of air quality management, this can assist policymakers in identifying specific measures 
to target pollution sources effectively. For example, if the data reveals that certain weather 
conditions or emissions patterns contribute to pollution peaks, policies can be tailored to address 
these issues. Moreover, when interpretability methods expose model biases or inequities in 
pollution predictions, policymakers can take corrective actions to ensure that policies do not 
unfairly impact certain communities or regions. 

Moreover, these techniques can also aid in scenario analysis and forecasting. Policymakers can 
use these models to simulate the potential outcomes of different policy interventions or climate 
scenarios. For instance, they can assess the impact of emissions reduction strategies on future 
air quality or examine the consequences of various climate change mitigation efforts. This proactive 
approach empowers policymakers to develop evidence-based policies and adapt to changing 
environmental conditions. 

Furthermore, the transparency provided by interpretable machine learning methods fosters 
effective communication with non-expert stakeholders, including policymakers. The visual and 
easily digestible explanations generated by these models play a crucial role in translating complex 
scientific findings into actionable information for decision-makers. This facilitates informed 
discussions and collaborative efforts between researchers, policymakers, and the public.  

Our review highlights research gaps, including the need to utilize explanatory methods on satellite 
images for examining regional impacts on air pollution predictions. The utilization of explanatory 
methods in air pollution forecasting is limited, requiring the development of new tools and methods 
for time series forecasting that can be applied to all types of models. Research on challenges and 
approaches to mitigate uncertainty associated with these methods is recommended. Additionally, 
conducting systematic reviews in other application areas to identify new interpretation tools 
would be valuable. 

 

5 CONCLUSION 
 
In this paper, we reviewed interpretable machine learning for air pollution prediction, with shapley 

additive explanations and partial dependence plots being prominent techniques. These methods 
identify key features influencing air pollution predictions, thereby enhancing understanding of 
interactions between atmospheric variables. Ultimately, these approaches can facilitate a better 
understanding of the complex relationship between air pollution and environmental health, climate 
change, and urban planning. Policymakers, scientists, and researchers can utilize this resource to 
gain insights into the crucial atmospheric variables that impact air pollution. Interpretable machine 
learning serves as a bridge connecting scientific insights and actionable policies, empowering 
decision-makers to translate data-driven findings into concrete actions. 
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