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ABSTRACT 

 
In this study, the particle size distribution and its influencing factors were conducted using a 

multi-channel particle size sensor coupled with Pearson and generalized additive model (GAM) 
during winter 2021 to autumn 2022 in Jinan, North China. The results revealed that heavy pollution 
episodes were mainly caused by fine particles (PM<1 and PM1-2.5) in winter and coarse particles 
(PM2.5-10 and PM>10) in spring. Pearson and generalized additive model (GAM) analysis indicated 
PM2.5 was positively correlated with relative humidity (RH), CO, NO2, SO2, and PM2.5-10 concentrations, 
negatively correlated with wind speed, O3 and coarse particles (PM>10) concentrations. Moreover, 
there was also a strong correlation between PM2.5 concentration and meteorological-air pollutant 
factors interactions. PM2.5-10 was found to be positively correlated with gaseous pollutants such 
as NO2, SO2, and CO, as well as RH and air pressure. Besides, PM>10 was positively associated with 
CO, SO2, and RH, but negatively correlated with NO2 and wind speed. The particle size distribution 
was also effected by regional transport, particular in winter and spring. In detail, PM2.5 and PM2.5-10 

were mainly transported from the east and north, PM>10 mainly from the north and southwest in 
winter. In spring, particle matters were mainly transported from the northeast and southeast, 
and PM2.5 was more influenced by northeast short-range transport. Local particulate generation 
was mainly raised by mobile sources from vehicles and industries such as oil refineries, chemical 
plant and steel plants. Therefore, the emission controls on VOCs, NO2, SO2 and regional joint 
pollution prevention are preferred to reduce urban air pollution in future. 
 
Keywords: Air pollution, Size distribution, Generalized additive model, Long-range transport 
 

1 INTRODUCTION 
 

In recent years, air pollution characterized by particle matter has become one of the most 
concerned environmental pollution issues in the past decade (Zhang et al., 2015b; Han et al., 
2016; Qiao et al., 2022). More than two million deaths are estimated to occur globally each year 
as a direct consequence of air pollution through damage to the lungs and the respiratory system 
(Shah et al., 2013). Of these deaths, about 0.21 million were caused by particle matter (Chuang 
et al., 2011; Shah et al., 2013). The study of particle size distribution characteristics can provide 
effective information for the sources, behaviour and mechanism of formation of particles in the 
atmosphere (Parmar et al., 2001). Pollutants from different sources are more likely to be enriched 
in particle matter of certain specific particle sizes (Allen et al., 2001). Particularly, haze pollution 
is greatly influenced by the particle concentration, size distribution, chemical composition and 
mixing state (Tan et al., 2016; Xiang et al., 2017). 

Related studies carried out in China found there were large differences in particle size between 
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the north and the south, with the peaks of particle size distribution in Chengdu, Tianjin and 
Hangzhou mainly concentrated in the 1.1–2.1 µm, 0.7–1.1 µm and 9.0–10.0 µm; 0.8–1.1 µm and 
9.0–10.0 µm; 0.7–1.1 µm and 9.0–10.0 µm, respectively (Wang et al., 2017). As a province with 
dense industry and population, Shandong was one of the major particulate emissions sources, 
and the distribution of particle matter exhibited spatial clustering and differential patterns (Zhang 
et al., 2007). The correlation with meteorological factors varied with the seasons, with dust 
having a significant impact on particle matter concentrations (Yu et al., 2021). In Jinan, capital of 
Shandong province, the particle matter was concentrated within the range of 0.1–2.5 µm, and 
the concentration and particle size distribution of particle matter exhibited distinct seasonal 
variations. The formation of particle matter was mainly attributed to traffic emissions and the 
transportation of particles from the suburbs (Xu et al., 2011; Wang et al., 2014). The particle size 
distribution in Beijing appeared a triple-peaked distribution in urban areas and a double-peaked 
distribution in suburban areas, with peaks mainly in the 0.43–0.65 µm and 9.0–10.0 µm particle 
size segments (Tan et al., 2016). In Hong Kong, the size distribution was concentrated at 0.4–0.7 µm 
and 8.0–9.5 µm (Gao et al., 2016). On a global scale, previous studies showed that the peak 
particle size distribution in Turin mainly around 1 µm and 5 µm, which was influenced by the 
combination of coal combustion, motor vehicle emissions, construction dust and other pollution 
sources (Malandrino et al., 2016). In Egypt, the particle size was mainly in the 0.46–0.75 µm and 
8.5–10.0 µm, and the specific distribution pattern varies greatly with the pollution degree (Moustafa 
et al., 2015). Athens particle size distribution varies greatly with the seasons, the percentage 
ranking was found as follows: PM0.95 > PM3.0-7.2 > PM7.2-10.0 > PM1.5-3.0, most particle number peaks 
in autumn are fine particles while in winter are coarse particles. This is due to the fine particle 
could be emitted from straw burning in autumn, and the inverse temperature weather in winter is 
more conducive to the formation of coarse particle matter (Karanasiou et al., 2007). 

In recent years, machine learning techniques such as random forest have been widely applied 
to investigate the non-relationship between PM2.5 and meteorological factors (Ly et al., 2021). 
Numerous scientific studies have found that the synergies between different pollutants, 
meteorological conditions and topographic features may influence the sources and dispersion of 
particle matter (Deng et al., 2012; Chen et al., 2014; Fu et al., 2014; Liu et al., 2017; Wang et al., 
2019). Various methods including particle growth rate (GR) calculations using both Log Normal 
and Max Concentration, aerosol optical depth (AOD) model simulations of near-surface emission 
sources, etc. have been used to explore the trends and influencing factors of air pollutants (Liu 
et al., 2009; Li et al., 2017a). However, research utilizing statistical methods to investigate particle 
size distribution and its influencing factors has not been widely reported in the study area during 
recent years. Generalized additive model (GAM) can fit the response and explanatory variables 
by the smooth spline functions, kernel function, and regression smooth function. It prefers to 
minimize residuals and maximize minimalism (Wu and Zhang, 2019). Compared with other statistical 
models, GAM are more flexible and freer thus it is suited to our study to analyze complex nonlinear 
relationships (Westervelt et al., 2016; Zhai et al., 2019). Thus, GAM can reflect the degree of 
correlation between different particle sizes and effect factors intuitively. Furthermore, it can provide 
a general framework for air pollution, which could help researchers and policy makers and to 
understand regional ambient air quality changes (Li et al., 2017b). Consequently, research comparing 
the particle size distribution characteristics and influencing factors is essential for pollution 
prevention as well as on the sources and formation of particle matter. 

As one of the polluted capital cities in north China, Jinan has been suffering from severe particle 
pollution in recent years (Wang et al., 2016; Tian et al., 2020; Yu et al., 2021). In this study, particle 
size from 0.25–35.0 µm along with six conventional air pollutants (PM2.5, PM10, SO2, CO, NO2, and 
O3) and meteorological elements from two stations (municipal super station and municipal 
monitoring station) were used to explore the factors of particle size distribution in the heavy 
pollution process from winter 2021 to autumn 2022. Mantel test, Pearson analysis and GAM were 
carried out to further confirm the influence from precursors and meteorological conditions. 
Moreover, the effects of long-range transport on particle matter pollution and particle size 
characteristics were discussed together with GAM results. This study aimed to further understand 
the formation mechanisms of different particle sizes and then help relevant administrations to 
take targeted management measures under different meteorological conditions. 
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Fig. 1. (a) The position of Jinan, 36°40′N, 117°00′E. (b) The position of the Monitoring station, 36°67′N, 117°17′E, and Super 
station, 36°67′N, 117°06′E. 

 

2 METHODS 
 

2.1 Research Area 
Jinan is located in the southeast of the North China Plain, bordering the Beijing-Tianjin-Hebei 

economic circle in the north and the Yangtze River Delta economic circle in the south, with a total 
area of 10,244.45 km2. By November 2021, there were 9,202,400 permanent residents. Geographical 
location ranges from 36°01′N to 37°32′N and 116°11′E to 117°44′E. The terrain is high in the 
south and low in the north, surrounded by mountains on three sides. The geographical location 
of Jinan, the positions of the monitoring station and the super station in Jinan, are depicted in 
Fig. 1. Compared to other monitoring stations, the Atmospheric Environment Super Monitoring 
Station of the Shandong Provincial Department of Ecology and Environment (referred to as the 
"Super station") has a more comprehensive array of instruments and a larger scale. Currently, it 
is equipped with a total of 21 devices, including Thermo Scientific Model-42i, Thermo Scientific 
Model-48i, Thermo Scientific Model-5030, and MetOne BAM-1020, and so on. 

 
2.2 Data 

The data of PM10, PM2.5, SO2, CO, NO2, O3 and meteorological factors from November 1, 2021 
to October 31, 2022 were obtained from the Integrated Atmospheric Observation Platform of 
Shandong Province (http://123.232.114.72:8096/shandong/login). During the sample time, 
November 1, 2021 to January 31, 2022 were defined as winter, February 1, 2022 to April 30, 2022 
were defined as spring, May 1, 2022 to July 31, 2022 were defined as summer, and August 1, 
2022 to October 31, 2022 were defined as autumn. The average concentration of pollutants in 
Jinan was calculated with reference to GB3095-2012. The long-range transmission data were 
acquired from ftp://arlftp.arlhq.noaa.gov/pub/archives/reanalysis. The particle size spectrum 
data are measured by SDS029, which is a multi-channel particle size sensor comprising 31 particle 
size channels ranging from 0.3 to 35.0 µm (including PM0.3, PM1.0, PM2.5, PM4.0, PM10.0, TSP, etc.). 
Based on the principle of single-particle laser scattering and following a calibration process, particle 
numbers and mass concentrations for each channel are output (More information on the data 
and sampling methods can be found in the Supporting Methods of Supplementary Information). 

 
2.3 Generalized Additive Model (GAM) 

Generalized additive model (GAM) is a flexible regression model based on prediction (Eq. (1)) 
(Verbeke, 2007). This model can perform more reasonable nonlinear fitting analysis than the 
traditional generalized linear models (Zhang et al., 2015a). In contrast to the generalized linear 
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model, the independent and dependent variables of the generalized addable model can be of 
arbitrary form, which is done to find a more suitable fitting curve (Sorek-Hamer et al., 2013; Ma 
et al., 2020). Meanwhile, GAM requires less data and can be applied to a variety of distribution 
types (e.g., Poisson distribution). The basic equation of GAM is as follows (Eq. (1)): 

 
g[E(Y)] = β0 + f1(X1) + f2(X2) + … + fn(Xn) + ε (1) 

 
where Y is the response variable; E(Y) is the mathematical expectation of response variable; g 
represents the connection function; β0 is the intercept; ε is the truncation error; X1, …, Xn 
represents the explanatory variables; f1, …, fn represents the smoothing function connecting 
explanatory variables, which is usually fitted using a smooth spline function. The results of the 
analysis were characterized by parameters such as degrees of freedom, P-value, F-value, adjusted 
coefficient of determination (R2), and variance interpretation rate. When the degree of freedom 
is greater than 1, it means that the relationship between the influencing factor and the response 
variable is nonlinear, and the larger the value of the degree of freedom, the more significant the 
nonlinear relationship; when the degree of freedom is equal to 1, it means that the relationship 
between the influencing factor and the response variable is linear. In addition, the selection 
process of the optimal model is done with the help of the Akaike information criterion (AIC) 
(Norman, 2000; Lin et al., 2018; Ma et al., 2020). The smaller the AIC, the better the model fit 
(Table S2). 

In this study, the hourly mass concentration of PM2.5 was used as the response variable, and 
the hourly values of pertinent environmental factors were utilized as the explanatory variables. 
Firstly, a Pearson analysis on PM2.5 and all the explanatory variables were conducted (Fig. 4). 
Secondly, correlation coefficients were applied to discern the degree of correlation between the 
factors. Significantly positive correlations between PM2.5 and temperature (T), relative humidity 
(RH), CO, NO2, SO2, and PM2.5-10 were detected by data preprocessing. However, no variable had 
a correlation coefficient greater than 8 with PM2.5, so explanatory variables were not combined 
and censored. 

The variance inflation factor (VIF) was applied to quantify the degree of multicollinearity. The 
stronger the multicollinearity, the larger the VIF value. If a predictor variable is not correlated with 
other predictor variables, the VIF of that predictor variable is 1 (He and Lin, 2017). The threshold 
was set to 5 and the VIF of each explanatory variable was less than 5 in this study (Table 2) and 
there is no multicollinearity (Huang et al., 2020). The hourly concentration of PM2.5 in the model 
conforms to the Poisson distribution and is constructed on its basis, so the log link function is used 
to connect the response variable to the explanatory variables (Thurston et al., 2000). The "car" 
package to computed VIF functions and the "mgcv" package were used to computed GAMs in R 
4.2.0 and Rstudio 12.0 (https://posit.co/download/rstudio-desktop/). 

 
log(PM2.5) = β0 + s(time) + DOW + s(T) + s(RH) + s(P) + s(WS) + s(CO) + s(NO2) + s(SO2) + s(O3) + 
s(PM2.5-10) + s(PM>10) + ε (2) 

 
where time is a number ranging from 1 to 3746 (Calculated from heavy pollution days), that is 
used in the calculation to assess long-term trends and seasonality; DOW (day of the week, ranging 
from 1 to 7) is a dummy variable that is used to control the weekend effect; β0 is the intercept; ε 
is the truncation error. T is the temperature (°C), RH is the relative humidity, P is the air pressure, 
and WS is the wind speed (Eq. (2)). 

In the multi-factor GAM, there are forty-five interactive influencing factors (Eq. (3)): 
 

( ) ( )2.5 0
1

log(PM ) ,
n

i i
i

s time DOW s P Mβ ε
=

= + + + +∑  (3) 

 
where Pi and Mi represents the environmental explanatory variables that affect the PM2.5 
concentration, and s(Pi, Mi) represents the interaction term between factor P and factor M. The 
remaining explanatory variables are the same as in Eq. (2). 
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2.4 Long-range Transport Model 
The hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model was applied to 

simulate the 24 h backward trajectory of the Jinan observation site (36°67′N, 112°32′E) in winter 
2021 and autumn 2022, 90.0 m a.s.l and time interval was set to 1 h. 

Concentration weighted trajectory (CWT) was applied to calculate the pollution concentration 
values for each trajectory in the grid, which were then weighted according to the residence time. 
The function to calculate the CWT value is expressed as (Eq. (4)) (Li et al., 2020a): 
 

1

1

M

l ijl
i

ij M

ijl
i

C
C

τ

τ

=

=

=
∑

∑
 (4) 

 
where the denominator represents the concentration sum in the grid; τijl represents the time 
node; Cl represents the trajectory node. 

 

3 RESULTS AND DISCUSSION 
 

3.1 Overview of Particulate Pollution 
3.1.1 Time distribution of particle size 

The particle size distribution of Jinan from winter 2021 to autumn 2022 were mainly from 1.0–
13.0 µm. In general, the particle pollution in winter were more serious than other seasons. 
(Fig. 2(a)). During the observation period, the most polluted period was winter 2021 with the 
particle size distribution was mainly 0.5–10.0 µm. There were 7 heavy pollution processes with 
particle size distribution of 1.0–10.0 µm, 1.3–10.0 µm, 0.3–6.8 µm, 0.3–10.0 µm, 1.3–10.0 µm and 
0.35–4.1 µm respectively (as shown in Fig. 2). The secondary polluted season was spring 2022, 
and the particle size was concentrated around 0.8–18.0 µm. Three heavy pollution processes 
were detected during this episode with the main particle size distribution of 1.6–35.0 µm, 1.8–
13.0 µm and 0.35–13.0 µm respectively. This shows that the particle size in winter was smaller 
than in spring in general (detail analysis was shown in Section 3.1.2). Particulate pollution in 
summer and autumn 2022 were lighter than in winter 2021 and spring 2022, with the major particle 
size distribution of 1.0–10.0 µm. 

During the observation period, the particle matter causing pollution was PM2.5 and PM2.5-10. 
Fine particle matter was small in size and light in mass, so they can easily suspended in the air. 
Particle pollution peaked during 7:00–12:00 and 17:00–1:00 with a 2.5–10.0 µm diameter. This 
phenomenon may be related to morning and evening peak vehicle emissions, vehicle brake wear, 
human production and domestic emissions (Fig. 2(b)) (Wei et al., 2022). Low temperature, high 
relative humidity and low wind speed appeared during early morning and night also favored the 
accumulation of particle matter (Bhaskar and Mehta, 2010). 

 
3.1.2 Proportion of particle size mass concentration 

The concentration of particle matter fluctuated considerably during the observation period 
(shown in Fig. 2). The largest proportion of each month during the observation period was PM2.5-10 
(Fig. 3). The highest monthly average concentrations of PM<1 and PM1-2.5 were detected in January 
2022, and the highest monthly average concentrations of PM2.5-10 and PM>10 were observed in 
March 2022. The percentage of PM2.5 concentration in winter was higher than in other seasons, 
while PM2.5-10 concentrations was higher in spring than in other seasons. This situation may be 
related to the strong windy in spring. Strong winds facilitated the dispersion of fine particle 
matter, while in winter, the conditions for the dispersion of fine particle matter were unfavorable, 
and heating emissions were more pronounced, resulting in a higher concentration of fine particle 
matter than in other seasons (Li et al., 2020b). Compared with the studies of heavy pollution days 
caused by particles in Tianjin (December 2013–January 2014), Hangzhou (December 2013–January  

https://doi.org/10.4209/aaqr.230127
https://aaqr.org/


ORIGINAL RESEARCH 
 https://doi.org/10.4209/aaqr.230127 

Aerosol and Air Quality Research | https://aaqr.org 6 of 21 Volume 24 | Issue 6 | 230127 

 
Fig. 2. Time series diagram of particle size concentration during winter 2021 to autumn 2022 in 
Jinan: (a) Meteorological conditions, gaseous pollutants, particle size distribution and particle 
concentration change from November 2021 to October 2022; (b) Daily variation of particle size 
concentration (mean value of observation time). 

 
2014) and Chengdu (December 2013–January 2014) mentioned above, particle size distribution 
in Jinan showed similar characteristics during polluted process in winter. 

 
3.2 Correlation Analysis of PM2.5 with Meteorological and Pollution Factors 
3.2.1 Pearson analysis and Single-factor model 

To better show the effect factors related to particle size, data acquired in heavy polluted 
seasons (from November 1, 2021 to April 30, 2022) were collected for model analysis. The linear 
relationship could indicate the effect factors more effectively and it was more valuable for the 
environmental initiatives during polluted episode. The meteorological factors that correlate well 
with PM2.5 were temperature (T), relative humidity (RH) and wind speed (WS); the pollution factors 
were CO, NO2, SO2, and PM2.5-10. The factors that correlated better with PM2.5-10 were CO and SO2, 
and those correlated well with PM>10 was SO2. The correlation between temperature, wind speed, 
CO, NO2 and particle size concentration decreases with the increasing particle size, and the 
correlation between O3 and PM2.5-10 was better than other particle size segments (Fig. 4). 

The PM2.5 concentration increased with temperature when the temperature was below 0°C 
and above 25°C observably (Fig. 5(a)). This may due to high temperature accelerates the translation 
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from the precursors gas to PM2.5 (Wang and Ogawa, 2015). Meanwhile, rising temperatures in 
winter often accompanied by a thicker inversion layer, leading to higher PM2.5 concentration 
(Meriwether and Gardner, 2000). PM2.5 was also significant positively correlated with relative 
humidity (RH) (Fig. 5(b)). The hygroscopic PM2.5 increases its mass significantly as RH increases 
(Chen et al., 2022). Meanwhile, A portion of volatile organic chemicals (VOCs) can react in the  

 

 
Fig. 3. Change in monthly average mass concentration of different particle sizes and its proportion in Jinan 
from winter 2021 to autumn 2022. 
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Fig. 4. Pearson correlation heat map of meteorological factors and air pollutants in the heavy polluted seasons: the left 
side shows the results of Mantel test, the thicker the line the larger the Mantel’s r, the darker the color the larger Mantel’s 
P, the solid line represents positive correlation, the dashed line represents negative correlation. The results of the Pearson 
test are shown on the right. 

 
aqueous phase to formed secondary organic aerosol (SOA) (Sui et al., 2021b). Nitrate and sulfate 
were transferred to higher size particle matters at high relative humidity more readily (Cheng et 
al., 2015). Also, high relative humidity can aggravate particulate emissions from car engines 
(Zalakeviciute et al., 2018). With the increase of wind speed, the PM2.5 concentration showed a 
decreasing trend. This was due to low wind speed was not conducive to the diffusion of fine particles, 
and strong wind was one of the main factors for their diffusion (Fig. 5(d)) (Han et al., 2016). The 
correlation coefficient between PM2.5 and CO was large. CO is identified as a marker related to 
diffusion conditions and combustion sources. High CO concentration often indicates poor diffusion 
conditions or more emission from combustion sources, which favors the formation of fine particles, 
resulting in a consistent concentration trend of PM2.5 and CO (Berglen et al., 2004). 

In the single-factor model, 10 environmental influencing factors were selected one at a time 
as explanatory variables. PM2.5 was used as the response variable in order to construct the model 
for analyzing the degree of fit of each factor with PM2.5 concentration (Table S1). The results 
showed that the p-values of each environmental factor were less than 0.001 and the degrees of 
freedom of each factor were greater than 1. It indicated that the 10 explanatory variables have 
a significant effect on PM2.5 concentration during the observation period. 

 
3.2.2 Multiple-factor model and influential effect 

The influencing factors that passed the hypothesis test and were statistically significant in the 
single-factor model were used as explanatory variables in GAM in the multi-factor model. PM2.5 
concentration were used as the response variable and the model was constructed for fitting 
analysis (listed in Table S2). The results showed that in the multi-influence model, each factor 
with P < 0.001 and df > 1 passed the significance test, adjusted R2 was 0.742, the total deviance  
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Fig. 5. Response curves of PM2.5 concentration to changes in (a) air temperature, (b) relative humidity, (c) air pressure, (d) wind 
speed, (e) CO concentration, (f) NO2 concentration, (g) SO2 concentration, (h) O3 concentration, (i) PM2.5-10, and (j) PM>10. The y-axis 
represents the smoothing function values and df is the degree of freedom for the trend. The x-axis represents the measured 
values of the influencing factor, the solid curve indicates the trend in PM2.5 concentration with the change of influencing factors, 
and the broken line area that is centered around the solid line indicates the CI (lower and upper limits) of PM2.5 concentration. 
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Fig. 6. Three-dimensional plots for the interaction effects of (a) CO and PM>10, (b) SO2 and PM2.5-10, (c) NO2 and SO2, (d) PM2.5-10 
and PM>10, (e) relative humidity and SO2, (f) NO2 and PM2.5-10 on variations in PM2.5 concentration in the heavy pollution process 
from November 2021 to October 2022 in Jinan. 

 
explained was 74.7% (higher than that of the single-factor model) and AIC was 3748.665. The 
results showed that all 10 environmental impact factors significantly affected PM2.5 concentration 
changes under the condition of P-value < 0.001, with some statistical significance and significant 
linear or non-linear relationships. 

The smoothed regression functions of the explanatory variables were obtained by establishing 
GAM for the multi-factor model with PM2.5 response variables. Then the effect map of each 
influence factor on PM2.5 concentration was illustrated (Fig. 5). Moreover, a multi-factor GAM was 
conducted to evaluate the interaction effects of all the influencing factors on PM2.5 concentration 
based on the single-factor mode. 12 of 45 interaction items were mapped that were significant 
and passed the statistical significance test (Fig. 6). During the sample period, all 12 interaction 
terms had high interpretation rates and variance contributions with P-value < 0.01 and F-value 
of 48.07–607.1. It indicated that these interaction terms fit better with PM2.5 concentration, and 
the multi-factor model was better than the single-factor model in explaining PM2.5 concentration 
changes and analyzing the interactions among the influencing factors. On the whole, the linear 
relationship between CO and PM2.5 was the strongest, CO-PM>10, CO-NO2, P-CO, RH-CO, and 
PM2.5 also had better interaction (seen in Table 1). 

During the observation period, the strongest interactive species were CO, PM>10 and PM2.5. 
When CO concentration was certain, PM2.5 concentration had a linear relationship with PM>10 
(Fig. 6(a)). In detail, when PM2.5-10 concentrations were low, PM2.5 concentration decreased  
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Table 1. Significant (p < 0.01) interaction terms (e.g., “P-CO” means the interaction effect of air pressure and CO) that mainly 
explained the variations in PM2.5 concentration during the period of November 2021 to April 2022 in Jinan in the multi-factor 
GAM. 

Interaction term CO-PM>10 CO-NO2 P-CO RH-CO CO-SO2 CO-O3 

edf 3.87 8.74 27.37 20.03 27.66 28.31 
Ref. df 4.93 11.29 28.82 24.21 28.88 28.96 
F-value 607.10 284.60 154.30 150.10 144.00 135.70 
P-value < 2e-16*** < 2e-16*** < 2e-16*** < 2e-16*** < 2e-16*** < 2e-16*** 
Interaction term PM2.5-10-PM>10 WS–CO NO2-PM2.5–10 SO2-PM2.5–10 O3-PM2.5–10 NO2-SO2 
edf 27.95 25.65 25.39 18.21 21.66 26.59 
Ref. df 28.93 28.33 28.21 22.82 26.02 28.63 
F-value 132.40 126.60 73.73 64.41 61.69 48.07 
P-value < 2e-16*** < 2e-16*** < 2e-16*** < 2e-16*** < 2e-16*** < 2e-16*** 

1 This indicates p < 0.001. 
 
sharply as PM>10 increased, and increased with NO2 and SO2. This was because higher wind speed 
was conducive to PM2.5 dispersion, however, it can trigger local dust raising caused higher TSP 
concentrations. When PM2.5-10 concentrations were high, PM2.5 was negatively correlated with 
PM>10 concentrations and positively correlated with NO2 and SO2 concentrations (Figs. 6(b), 6(d), 
and 6(f)). PM2.5 concentration increased and then decreased with SO2 concentration when exposed 
to lower RH; there was a linear relationship between SO2 and PM2.5 concentration at higher RH, 
at PM2.5 concentration reached the maximum when medium RH and high SO2 concentration were 
observed (Fig. 6(e)). It was suggested both moisture absorption of PM2.5 and SO2 conversion in 
water vapor caused high PM2.5 concentration (Yang et al., 2015). In winter, high pressure usually 
means local region was controlled by cold air from the northwest with cleaner air mass. While 
low pressure was often accompanied by high RH, leading to higher PM2.5 concentration (Jian et 
al., 2012). The increasing temperature and RH were usually accompanied by thicker inversion 
layer. Meanwhile, high relative humidity favors the PM2.5 hygroscopic process (Chen et al., 2020). 
PM2.5 and SO2 concentrations were positively correlated when NO2 concentrations were constant 
(Fig. 6(c)). Both NO2 and SO2 are important precursors of atmospheric particulate pollutants by 
forming SO3

2–, SO4
2–, NO3

–, and NO2
– (Meng et al., 2022). By constructing GAM for each influencing 

factor and analyzing the interaction, we found that the multi-factor model can better characterize 
the variation of PM2.5 concentration under each influencing factor than the single-factor model. 
In summary, the multi-factor model and the interaction of influencing factors were a powerful 
tool in analyzing the characteristics of PM2.5 concentration changes, and the simulations were 
closer to realistic conditions. 

 
3.3 Possible Factors Contribute to Air Pollution 
3.3.1 Heavily polluted processes 

In order to evaluate particle size distribution in polluted episodes, two typical heavily polluted 
processes in winter (November 12, 2021, 0:00–November 22, 2021, 0:00) and spring (March 6, 
2022, 0:00–March 13, 2022, 0:00) were selected based on the time distribution of particle 
concentration as shown in Fig. 2 and Fig. 7. The results showed that the heavily polluted process 
in winter was dominated by fine particle matter, with the main particle size was concentrated to 
PM<1 and PM1-2.5. While in spring the polluted episode was caused by coarse particle matter 
(PM2.5-10 and PM>10). 

In winter 2021, PM2.5-0 predominated at the beginning of the pollution phase, then gradually 
decreased. Meanwhile, PM<1 and PM1-2.5 increasing along with the pollution phase. Combined 
with the meteorological conditions, the higher wind speed favored local dust production. As the 
wind calm down, the diffusion starts to degrade results in the assembling of fine particles. In 
spring 2022, at the beginning of the pollution phase, the main particle matter was dominated by 
PM2.5-10 and PM>10; as the wind speed got stronger PM2.5-10 and PM>10 concentrations increased 
rapidly. While only slightly PM1-2.5 increasing was observed. In the later polluted period, PM2.5-10  
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Fig. 7. Evolution of particle matters (PM<1, PM1-2.5, PM2.5-10, PM>10), gaseous pollutants (CO, NO2, 
SO2, and O3) and meteorological parameter (Temperature, relative humidity, wind speed and 
wind direction, the arrow direction stands for wind angle) in (a) winter of 2021 and (b) spring of 
2022 during heavy pollution. 
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and PM>10 concentrations began to decrease and PM<1 concentrations began to increase. This 
may due to the wind speed reduced in the later phase. Therefore, the concentrations of coarse 
particles decreases and the concentrations of fine particles increases. In most winter heavily 
polluted process, wind speed kept less than 2.0 m s–1, relative humidity (RH) was higher than 
60.0% and temperature was below 12.0°C. Such weather conditions was conducive to inversion 
layer formation and enhances pollution effects caused by local emissions (Akpinar et al., 2008). 
Therefore, strictly controlling emissions should be adopted during such steady weathers, e.g., the 
restriction of motor vehicle driving, fuel gas recovery at gas stations, and emission controls in the 
petroleum and paint industries which can help reduce the precursors of PM such as NO2, SO2, 
and VOCs. 
 
3.3.2 Long-range transport 

Besides local emission, long-range transport was also found as an important source that 
contributes to particle pollution. A total of 2146 trajectories were identified in winter 2021. In 
winter, particle matter pollution in Jinan was primarily attributed to short-range transport, with 
transport heights mainly ranging from near the surface (0–600 m, seen in Fig. 8(a)). These 
trajectories were aggregated into 6 trajectory types by clustering analysis. The largest proportion 
was Trajectory 2 (29.08%), which mainly come from the short-range transmission in the northern 
region. Trajectory 6 (24.56%) and Trajectory 1 (20.62%) mainly come from the short-range 
transmission in the southwest and southern region, respectively. While Trajectory 5 (15.66%) 
mainly come from the eastern coastal transmission and Trajectory 3 (9.37%) come from the long-
range transmission in the northwest. Particle matter pollution in spring was dominated by 
medium-range and long-range transport (height 600–800 m, listed in Fig. 8(b)) with 2,136 
trajectories. Compared to winter, air mass in spring was dominated by long-range transport, with 
the largest proportion of Trajectory 3 (21.96%) come from the southwest. This was followed by 
Trajectory 5 (18.36%) come from the southeast. Long-range transported air masses come from 
the northwest and northeast regions increased and short-range transport decreased compared 
to winter. Long-distance transport from the north (600–1200 m) was generally situated above 
the boundary layer, and the air masses were relatively clean. In contrast, short-distance transport 
(0–400 m) often occurred below the boundary layer and was more susceptible to the influence 
of ground pollutants and locally generated pollution. 

The statistical results of pollution trajectories showed that the particulate pollution during 
winter 2021 to autumn 2022 in Jinan was mainly influenced by trajectories come from the 
eastern coastal region and the southeast region. PM2.5, PM10 and PM2.5-10 in winter were mainly 
transported from the north (Trajectory 2) and east (Trajectory 5) while PM>10 were mainly from 
the north (Trajectory 2) and southwest (Trajectory 6). PM in spring were mainly from the 
northeast (Trajectory 1) and southeast (Trajectory 5). In addition, PM2.5 was also more influenced 
by the northeast proximity transport (Trajectory 2) (Table 2). PM2.5 and PM10 in summer were 
mainly from the northeast (Trajectory 3) and southwest (Trajectory 6) while in the autumn were 
mainly from the southwest (Trajectory 6) and PM10 were mainly from the south (Trajectory 5) 
(Table S3). The pollution trajectories were much less in summer and autumn than in winter and 
spring as summarized in Table 2 and Fig. 8. Besides local emission, long-range transport was also 
found as an significant factor that contributes to urban air pollution (Huang et al., 2014). The 
potential source region of PM2.5 and PM10 in Jinan in winter and spring indicated PM2.5 and PM10 
were mainly come from short-range transmission in winter and long-range transmission in spring 
(Fig. 9). 

PM2.5 was mainly influenced by the southeastern Bohai region in winter, while mainly 
transported from the northeast in spring. The major transport source of PM10 was northern and 
eastern short-range transport in winter, while in spring, air masses from the northeastern coastal 
and southwestern regions were the main transport PM10 sources. It could be found that particles 
in winter were mainly dominated by local emissions and short-range transport. The dispersion 
conditions were worse in winter, while in spring the long-range transport become an important 
transmission mode (Sui et al., 2021a). Based on the correlation analysis, during the winter 2021, 
the passage of cold air from north led to a decrease in temperature, thereby favor the diffusion 
of particles. As seen in Table 2, air masses originating from the northern regions were relatively  
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Fig. 8. Result of cluster analysis of backward trajectory of airflow in Jinan in (a) winter 2021, (b) spring, (c) summer, 
and (d) autumn 2022. 
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Table 2. Polluted trajectory transmission statistics in winter 2021 and spring 2022. 

PM 
Winter 2021 Spring 2022 

Cluster P_Number P_Mean_Val P_Stdev P_Number P_Mean_Val P_Stdev 
PM2.5 1 55 106.15 20.44 146 86.38 44.49 

2 257 120.53 31.32 198 73.80 27.11 
3 15 107.66 28.53 264 52.83 16.35 
4 67 118.25 28.42 112 51.53 14.58 
5 185 134.19 58.99 228 65.66 21.73 
6 126 102.92 15.25 122 62.99 28.09 
All 705 119.35 39.43 1070 65.04 28.54 

PM10 1 91 218.02 66.81 96 246.97 76.24 
2 353 252.52 72.79 87 220.66 55.03 
3 30 212.92 64.51 58 200.54 52.53 
4 83 230.12 60.86 47 253.75 124.36 
5 221 281.32 103.92 148 209.99 40.99 
6 165 215.25 45.86 62 201.76 49.24 
All 943 246.19 79.70 498 220.99 67.38 

PM2.5-10 1 47 99.63 28.89 108 91.48 41.48 
2 178 106.12 23.94 48 84.62 43.05 
3 34 123.22 55.03 76 97.92 60.32 
4 41 96.12 16.37 70 117.19 66.32 
5 127 115.85 33.20 141 109.58 65.75 
6 102 89.94 15.06 87 89.00 42.99 
All 529 105.08 29.72 530 99.58 56.28 

PM>10 1 50 37.39 25.84 93 34.78 14.32 
2 177 35.60 11.07 48 39.34 27.76 
3 51 50.46 28.62 75 37.41 15.88 
4 31 34.89 11.15 97 50.60 40.73 
5 94 41.83 19.47 131 39.60 29.80 
6 123 32.10 11.16 86 30.20 11.64 
All 526 37.46 17.69 530 38.91 26.85 

 
clean, and their contribution to particulate pollution was comparatively minor. Otherwise, higher 
temperatures in winter indicated stable boundary layer thus the pollution from fine particle 
matter may have been exacerbated. Therefore, local emissions and short-range transport from 
the southwest and northern regions were the main modes of particle r transport during the 
winter. In contrast, meteorological in spring was often characterized by high wind speeds, low 
humidity, and rising temperatures, creating favorable conditions for the particle transported 
from the northern areas. In summary, the potential source areas suggested particle matter were 
mainly transported from the north industrial cities, the northwest Loess Plateau and Inner 
Mongolia region with low vegetation cover and serious land desertification and the southwest 
Central Plains with serious industrial pollution (Li et al., 2021). 
 

4 CONCLUSIONS 
 

The results showed that the main particle size distribution in Jinan was 1.0–13.0 µm, in winter, 
PM was dominated by secondary pollutants and fine particles, the main particle size distribution 
was PM<1 and PM1-2.5. In spring, coarse particles occupied most PM, while in clean days a large 
proportion of PM was fine particles. In summer and autumn, particle matter pollution was lighter, 
with the main particle size was PM2.5-10. From the daily variation, particle pollution reached peaks 
at 7:00–12:00 and 17:00–1:00. This may be associated with vehicle emissions, vehicle brake wear, 
human activity emissions in the morning and the adverse layer effects at night. 

Pearson and GAM analysis showed that temperature, RH, wind speed, NO2 and SO2 concentrations 
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Fig. 9. The CWT analysis for PM2.5 and PM10 in Jinan in (a) winter 2021, (b) spring, (c) summer, and (d) autumn 2022. 
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had significant effects on fine particle matter concentrations. PM2.5 concentration were positively 
correlated with RH, CO, NO2, SO2, and PM2.5-10 concentrations, while negatively correlated with 
wind speed, O3 and PM>10 concentrations. The correlation between temperature, wind speed, 
CO, NO2 and particle size concentration decreased with the increasing particle size. PM2.5-10 was 
found to be positively correlated with gaseous pollutants such as NO2, SO2, and CO, as well as RH 
and air pressure. Besides, PM>10 was positively associated with CO, SO2, and RH, but negatively 
correlated with NO2 and wind speed. The interaction between meteorological factors and air 
pollutants also showed a strong correlation with PM concentrations. The hygroscopicity of PM 
caused a significant mass increase as the RH increased. High RH also aggravated the particle 
matter emissions from automobile engines. The analysis of backward trajectories and concentration 
weighted trajectory (CWT) showed that besides local source, particle matter pollution in Jinan 
mainly came from the eastern coastal region and the southeastern region. Winter and spring 
were more influenced by regional distance transport. In winter, PM2.5, PM2.5-10, and PM10 were 
mainly transported from the east and north while PM>10 was mainly from the north and southwest. 
In spring, PM was mainly transported from the northeast southeast and the close transmission 
from the northeast. 

In general, the treatment of particle matter pollution should be focused on the winter and 
spring, and the emission controls on NO2 would be essential to reduce fine particle pollution in 
the next phases. Also, more stringent emission control under low temperature together with high 
RH should be issued. The control of primary and coarse particle matter (e.g., road and construction 
dust) should be a primary measure when the strong windy appeared in spring. To improve air 
quality for a long-term, the development of stricter motor vehicle emission standards, fuel gas 
recovery at gas stations, and emission controls of the oil and paint industries would help reduce 
the precursors of fine particles such as NO2, SO2, and VOCs. Moreover, regional cooperation is 
essential to mitigate urban particle pollution from regional scale. 
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