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ABSTRACT 

 
Airborne particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is a 

major air pollutant worldwide. In Malaysia, transboundary ‘haze’ episodes with elevated PM2.5 
concentrations linked to fires are common, causing health and economic harms. To reduce impacts, 
forecasting PM2.5 can enable effective PM2.5 management and decision-making. Until now, PM2.5 
forecasts via a global mechanistic chemical transport model (CTM) have not been evaluated in 
the setting of Malaysia, where operational PM2.5 forecasting systems for preventive warnings are 
not yet deployed. Hence, this study aims to evaluate the performance of PM2.5 forecasts produced 
by a global CTM and to assess their suitability for use nation-wide in Malaysia. We used the surface 
PM2.5 forecasts from the Copernicus Atmosphere Monitoring Service’s (CAMS) global atmospheric 
composition forecast dataset (CAMS-GACF) and evaluated them against hourly PM2.5 observations 
recorded throughout Malaysia from 2018 to 2020 via exceedance and accuracy analyses. We 
found that cycle 46r1 CAMS-GACF performance in Malaysia was generally weaker (critical success 
index (CSI) = 31%, R2 = 0.36) than reported in other studies (CSI = 20–54%, R2 = 0.32–0.79) focused 
on other countries, across multiple metrics in both analyses. We found CAMS-GACF did not accurately 
capture local-scale spatiotemporal variations in PM2.5 spatially and diurnally. However, we found 
CAMS-GACF captured better the increased regional PM2.5 pollution during the transboundary 
‘haze’ episode of 2019. Based on our findings, we also propose recommendations on integrating 
CAMS-GACF in early-warning systems in Malaysia and on improving forecasts via bias-correction. 
 
Keywords: CAMS, IFS, Early warnings, Haze episodes, Ground-level air quality monitoring 
 

1 INTRODUCTION 
 

Airborne particulate matter (PM) is a major air pollutant. It has natural (e.g., wind-blown dust, 
sea-salt) and anthropogenic sources (e.g., combustion, forest fires) (Amil et al., 2016; Amin Jaafar 
et al., 2018; Ooi et al., 2015; Roberts and Wooster, 2021; Suradi et al., 2021). Globally, PM pollution 
reduces up to 10 million years of life expectancy every year, affects regional water availability, and 
contributes to climate change (Lelieveld et al., 2019). Southeast Asia is no exception to these, with 
frequent biomass burning and subsequent PM pollution throughout the whole region (Adam et al., 
2021). In Malaysia, haze episodes (mostly transboundary) with heightened PM mass concentrations 
are regular, occurring almost annually in the last decade (Department of Environment Malaysia 
(DOE), 2022). These episodes have severe health and economic consequences (Amil et al., 2016; 
Phung et al., 2022; Sahani et al., 2014): the 2013 Southeast Asian Haze alone cost Malaysia MYR 
410 million in hospitalisation bills, medical leaves, and personal protective equipment (PPE), and 
up to MYR 1 billion more to lost income opportunities (Manan et al., 2018). It is known that PM 
with an aerodynamic diameter of less than 2.5 µm (PM2.5) dominates the mix during these episodes 
(Adam et al., 2021; Kusumaningtyas and Aldrian, 2016). The U.S. Environmental Protection 
Agency (U.S. EPA, 2022) marked PM2.5 as “the greatest health risks”, higher than the coarser PM, 
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because it is respirable and can readily enter the bloodstream, affecting the respiratory and 
cardiovascular systems (Manan et al., 2018). Hence, PM2.5 is not just the major air pollutant in 
Malaysia, it is also very detrimental to Malaysia’s health and economy. 

One way to reduce the impacts of PM2.5 pollution is through PM2.5 forecasting. PM2.5 early-warning 
systems have been implemented in many countries and cities worldwide, often using forecasts 
derived from mechanistic, computer-driven chemical transport models (CTMs) (Casallas et al., 
2020; Celis et al., 2022; Cho et al., 2021; Roux et al., 2020; Savage et al., 2013; Varga-Balogh et al., 
2020). Forecasting should aid preparation for bad air quality in advance and early decision-making 
to reduce exposure and improve resilience via personal and institutional means, e.g., mandate PPEs, 
institute advanced quarantine orders, and implement dynamic abatement measures (e.g., abating 
traffic, industrial emission, fire) (Lyu et al., 2017; Zhou et al., 2010). To these ends, forecasting should, 
at minimum, be able to forecast elevated PM2.5 events such as the Southeast Asian haze episodes. 
Since PM2.5 can remain airborne long enough to be a regional and long-duration problem like the 
Southeast Asian hazes (Dahari et al., 2019; Fujii et al., 2016), CTMs for PM2.5 forecasts commonly 
cover large spatiotemporal scales. For effective PM2.5 management, forecasts should also be made 
3 to 5 days in advance for decision-making to translate into actions (Lyu et al., 2017). Therefore, 
a global CTM with a medium-range forecast is appropriate for forecasting PM2.5. 

However, the few air quality forecasting studies that focus on Malaysia are solely based on 
statistical and machine learning models (ML) applied over limited scale and resolution in space 
and time (Koo et al., 2020; Lim et al., 2008; Wong et al., 2021). In fact, Malaysia currently only 
provides reactionary warnings based on current observed pollution levels, limiting the efficacy of 
pollution response and decisions (Wong et al., 2021). There are currently no operational PM2.5 
forecasts for preventive warnings in Malaysia, or any in the literature utilising CTMs, much less 
evaluating its performance Malaysia-wide. Accordingly, in this study, we aim to evaluate the 
performance of PM2.5 forecasts from a global mechanistic CTM, and to assess their suitability for 
use nationally in Malaysia. Specifically, we aim to investigate the difference in forecast performances 
between: (a) geographical regions, (b) non-haze and haze episodes, (c) forecast horizons, and 
(d) model versions, and to provide implications and recommendations when using a global CTM 
for PM2.5 forecasting in Malaysia. 
 

2 METHODS 
 
2.1 Haze Episodes in Malaysia 

Malaysia is located within maritime Southeast Asia, consisting of Peninsular Malaysia and 
Malaysian Borneo separated by the South China Sea (Fig. 1). PM pollution in Malaysia is thought to 
be highly dependent on the geographical region and the monsoon seasonality, i.e., the southwest 
monsoon (SWM) occurring around July, northeast monsoon (NEM) around January, and the 
inter-monsoons between them (INM) (Juneng et al., 2009). Haze episodes, informally defined as 
periods with impaired visibility and elevated PM2.5 concentrations, occurs almost every year in 
the last two decades according to DOE (2020, 2019, 2018, 2017a, 2022). Among all haze episodes 
Malaysia experienced between 2010 and 2019, episodes in June 2013, September–October 2015, and 
August–September 2019 were particularly severe, affecting Malaysia nationally (see Supplementary 
Material 1 (SM1)). These episodes all occurred during the regionally drier SWM that increases 
risks of wildfires, and all are thought to be largely transboundary, sourced from Indonesian forest 
and peat fires (Reddington et al., 2014; Tacconi, 2016; Zainal et al., 2021). Numerous HYSPLIT 
backward trajectory analyses also revealed that air parcels usually travelled from Sumatra and 
Kalimantan to various locations in Malaysia within 1 to 4 days during the SWM hazes (Dahari et 
al., 2019; Dotse et al., 2016; Kusumaningtyas and Aldrian, 2016; Reddington et al., 2014; Show 
and Chang, 2016; Zainal et al., 2021). This further highlights the regional nature of extreme PM2.5 
pollution and the suitability of using a global forecast over several days to predict haze in Malaysia. 
 
2.2 Model Details 

We employed forecasts produced from Copernicus Atmosphere Monitoring Service’s (CAMS) 
Integrated Forecasting System (IFS) as our PM2.5 forecasts in our analyses. IFS is a global forecast  
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Fig. 1. Malaysia’s air quality monitoring network (locations of 65 CAQMS and their geographical regions), and the observed PM2.5 
concentration at the Petaling Jaya Station (thin line – hourly data; thick line – 15-day running-average). 

 

and assimilation system that was initially developed and used by the European Centre for 
Medium-range Weather Forecasts (ECMWF) solely for weather-forecasting, but extra modules 
were developed to also forecast atmospheric composition (henceforth known as CAMS-IFS) 
(ECMWF, 2022a). CAMS-IFS utilises a four-dimensional variational data assimilation (4D-Var) which 
combines meteorological and atmospheric composition observations with past forecasts to produce 
an initial state closer to reality (the analysis), improving the next sets of forecasts (Bannister, 2007; 
Benedetti et al., 2009). CAMS-IFS may be suitable for forecasting PM2.5 in Malaysia because it has 
a global extent, and the time-horizon is relevant for timely decision-making and for forecasting 
the SWM hazes.  

The major module of interest within the CAMS-IFS is the IFS-AER. It models the aerosol 
components, including chemical transformations, transport, and deposition (Rémy et al., 2019). 
The aerosol emissions are obtained from a combination of natural and anthropogenic emission 
inventories derived from pre-established inventories (Granier et al., 2019). For example, the monthly 
anthropogenic emission inventory used (CAMS-GLOB-ANT) was derived by extrapolating EDGAR 
emissions using trends from CEDS, with approximately 10 km resolution (Crippa et al., 2018; 
Hoesly et al., 2018). Given our interest in fire-sourced haze, CAMS-IFS-AER also uses daily biomass 
burning emissions estimated by the Global Fire Assimilation System (GFAS) using real-time remotely 
sensed fires (ECMWF, 2022b, 2022a). The transport, chemical transformation, and deposition of 
emitted aerosols were then modelled according to their size and chemical characteristics (Rémy et 
al., 2019). The resulting PM2.5 concentrations are calculated based on the simulated concentrations 
of different aerosols and their sizes at that time step. 

Near-term forecasts provided by the previous run are first constrained via satellite aerosol 
optical depth (AOD) observations over a 12-hour assimilation window. CAMS-IFS-AER then provides 
120 hours (5 days) of surface PM2.5 concentration forecasts with approximately 40 km spatial 
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resolution every 12 hours at 08:00 and 20:00MYT, made available through CAMS’s global 
atmospheric composition forecast dataset (CAMS-GACF) (https://ads.atmosphere.copernicus.
eu/cdsapp#!/dataset/cams-global-atmospheric-composition-forecasts?tab=overview). Only the 
20:00MYT forecasts were used in this study because they provide forecasts closest to the next 
day in Malaysia. CAMS-IFS underwent a major upgrade to cycle 46r1 in 2019, including increasing 
vertical resolutions, coupling CAMS-IFS-AER with chemistry modules to model nitrate and 
ammonium aerosols, and added diurnal cycles to emissions (ECMWF, 2019; Rémy et al., 2019), 
drastically affecting PM2.5 forecasts (Basart et al., 2019). The major 2019 transboundary haze 
episode also occurred during the operation of 46r1 CAMS-IFS. Therefore, this study will focus on 
forecasts produced by the 46r1 model, but other model versions within the study period were 
also assessed. More details on the model, its configurations and upgrades, and the CAMS-GACF 
are provided by Rémy et al. (2019) and ECMWF (2022a). 
 
2.3 Datasets 

(a) Ground observations. Malaysia has an air quality monitoring network since 1995, but PM2.5 
was only included as an air quality monitoring parameter in 2017, and as a subindex in the air 
pollutant index (API) in 2018 (DOE, 2018, 2017b). Hence, long-term consistent PM2.5 records are 
limited. As of 2022, there are 65 continuous air quality monitoring stations (CAQMS) currently in 
operation throughout Malaysia. All CAQMS sample PM2.5 using TEOM™ 1405-DF Continuous 
Dichotomous Ambient Air Monitors (https://www.thermofisher.com/order/catalog/product/
TEOM1405DF?SID=srch-srp-TEOM1405DF), with the data undergoing reasonable quality control 
and assurance by the operating company before being published. The PM2.5 concentration data 
are used with the national air quality index system and are also commonly used for air quality 
research in Malaysia (e.g., Ahmad Mohtar et al., 2022; Sobri et al., 2021). 

We obtained hourly PM2.5 concentrations for all CAQMS from 1 January 2018 to 31 August 
2020, provided by DOE. The 65 CAQMS were grouped by the DOE into five geographical regions, 
i.e., North, Central, South, East, and Borneo (Fig. 1). In this study, North, South, and East were 
combined into one region named ‘Peninsular’. The Central region was isolated as a distinct region 
as it contains the largest urban area in Malaysia, the Greater Kuala Lumpur region. We thus 
proceed with three regions defined: ‘Peninsular’, ‘Central’, and ‘Borneo’. 

(b) Model forecasts. The 20:00MYT hourly surface PM2.5 forecasts were obtained from CAMS-
GACF. The forecasts were then bilinearly interpolated to the latitude-longitude coordinates of 
each CAQMS. During the two-and-a-half-year study period, CAMS-IFS was upgraded twice, i.e., 
on 26 June 2018 and 9 July 2019 (ECMWF, 2022a), resulting in forecasts produced by three model 
cycles: 43r3, 45r1, and 46r1. As mentioned before, this study will focus on the later model 
version, 46r1, but 43r3 and 45r1 are also evaluated and compared. 
 
2.4 Forecast Evaluation 

The ground-observed and model-forecasted hourly PM2.5 concentrations were first averaged 
through each time-horizon day, i.e., the 24 hours from 21:00MYT to 20:00MYT the next day. The 
first through to the fifth time-horizon days are known as F1–F5, covering 120 hours of the 
forecasts. Although we are particularly interested in the larger timescales of transboundary hazes, 
diurnal variations are also important when assessing CAMS-GACF (e.g., Wu et al., 2020). Thus, 
diurnal accuracies of the forecasts are also evaluated separately as described in Section 2.4.2. 

The forecasts were then evaluated against the observations (assumed as true benchmarks) via 
exceedance and accuracy analyses, which are described in the next section. Our evaluation 
considers all five time-horizon days, except when explicitly evaluating differences across time-
horizons (see Section 2.4.3).  
 
2.4.1 Exceedance analysis 

Exceedance analysis dichotomously classifies the PM2.5 status into ‘normal’ and ‘bad’ PM2.5 air 
quality and assesses the forecasts’ ability to predict them. This dichotomous classification is 
typically intrinsic to decision-making and early warnings. The analysis would evaluate whether 
the model can produce functional forecasts that may be useful in PM2.5 management. 
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The threshold concentration levels to classify ‘bad’ and ‘normal’ PM2.5 levels can be rather 
arbitrary, defined more by policies (Doswell, 2004). Past health studies classify ‘bad’ PM levels as 
concentrations above pre-defined standards or guidelines (Phung et al., 2022; Sahani et al., 2014). 
In this study, we defined the threshold according to Malaysia’s National Ambient Air Quality 
Standards (MAAQS). The MAAQS were set up based on three different standards: 75 (IT-1, 2015), 
50 (IT-2, 2018), and 35 µg m–3 (IT-3, 2020) (DOE, 2014). Days with averaged PM2.5 concentrations 
(rounded to the nearest µg m–3) above these thresholds are considered exceedances. Using these 
thresholds, the forecasts’ performances were evaluated using three metrics: probability of 
detection (POD), false alarm ratio (FAR), and critical success index (CSI) (see SM2). They reveal 
whether users can be confident in the forecasts to predict bad PM2.5 days.  
 
2.4.2 Accuracy analysis 

Accuracy analysis utilises PM2.5 concentration values directly to compute and aggregate some 
measures of accuracies using different metrics. While this analysis does not directly evaluate the 
forecasts’ use in the policy domain, it links the forecasts’ performance and improvement to specific 
areas in the forecasts. Since PM2.5 pollution is spatiotemporally heterogenous in Malaysia, we 
need to fully evaluate the forecasts in space and time. This was done via four characterisation 
methods (adapted and altered from Meroni et al., 2013) (Fig. 2): 
(1) Total characterisation. Accuracies were aggregated across all CAQMS and time: overall 

forecast performance is characterised by a number; 
(2) Spatial characterisation. Accuracies were aggregated across time: temporal performances 

are characterised for each CAQMS, represented by a map of Thiessen polygons; 
(3) Temporal characterisation. Accuracies were aggregated across CAQMS: spatial performances 

are characterised for each day, represented by a timeline; and 
(4) Diurnal characterisation. Since diurnal components were removed via the daily-averaging, 

diurnal variations in the raw hourly observed and forecasted PM2.5 were averaged across 
CAQMS and time. 

The accuracies were aggregated using five accuracy metrics: mean bias (MB), modified 
normalised mean bias (MNMB), root mean square error (RMSE), fractional gross error (FGE), and 
coefficient of determinant (R2) (see SM3). They are all used by CAMS validation server in Europe 
(CAMS, 2022), while some are also commonly used to report model performance in the literature 
(e.g., Savage et al. (2013); see SM7). These metrics provide a comprehensive comparison between 
different regions and models in other studies. While MB and RMSE are intuitive because they  

 

 
Fig. 2. A simple schematic of the accuracy analysis characterisation methods. Accuracies are aggregated across the time- 
(rightward) and space-axis (downward) to evaluate CAMS-GACF (space-time-horizon data cube). 
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are expressed in real units (µg m–3), the normalised metrics, i.e., MNMB, FGE, and R2, are better for 
comparisons between CAQMS and periods with different observed PM2.5 concentrations. Therefore, 
we only used the normalised metrics for spatial and temporal characterisations. Since diurnal 
variations are important when evaluating CAMS-GACF, we also assessed diurnal characteristics 
by simple visual inspection of pattern differences between observations and forecasts, rather than 
through accuracy metrics. 
 
2.4.3 Comparing variables 

The forecasts’ exceedance and accuracy performances were also evaluated against different 
comparing variables. Differences between our three geographical regions were assessed as a 
primary comparing variable, in addition to three secondary comparing variables (within which 
differences between regions were also assessed): 
(a) Non-haze and haze episodes. Only the main haze episodes were considered. The months of 

August and September in the 2019 haze were marked as haze episodes (other periods are 
non-haze). Forecast performances during non-haze and haze episodes were compared.  

(b) Time-horizon days. Model performances for the five different time-horizon days (i.e., F1–F5) 
were compared; and 

(c) Model versions. Since no severe haze occurred during the operations of 43r3 and 45r1, only 
non-haze periods were compared between the model versions. Performances of different 
model versions were compared. 

 

3 RESULTS 
 
3.1 Overall Performance 

The results of the exceedance analysis are shown in Table 1. Overall, the 46r1 CAMS-GACF 
performed better with lower exceedance thresholds. The highest POD, FAR, and CSI was obtained 
for the most stringent threshold (IT-3) at 46%, 52%, and 31%, respectively. POD and CSI increased 
while FAR decreased (i.e., all improved) with more stringent PM2.5 thresholds for all regions 
except Central, where FAR and CSI were the highest and lowest (i.e., both worst) when using IT-2. 
The poorer performance in Central using IT-2 can be attributed to the overall overprediction here, 
where IT-2 threshold labelled forecasted levels as exceedances and observed levels labelled as 
non-exceedances, causing higher (poorer) FAR.  

The results of the accuracy analysis total characterisation are shown in Table2. During the study 
period, overall mean observed PM2.5 (o̅) was 17.6 µg m–3, while overall mean forecasted (f �) was 
lower at 14.3 µg m–3. The 46r1 CAMS-GACF had an overall negative bias in Malaysia (underprediction; 
MB = –3.3 µg m–3, MNMB = –0.38). In fact, Peninsular and Borneo had a negative bias (MB, MNMB) 
while Central had a positive bias. While RMSE was highest at Central followed by Borneo, FGE 
was highest at Borneo followed by Peninsular. But FGE, which measures proportional errors, are 
simply higher at regions with lower PM2.5 concentrations despite similar or lower RMSE, which  

 
Table 1. The 46r1 CAMS-GACF performance in forecasting PM2.5 exceedances Malaysia-wide 
(overall) and in the three regions over three exceedance thresholds (IT-1, IT-2, IT-3). Performance 
was evaluated for all five time-horizon days. 

 Threshold  Overall Peninsular Central Borneo 
POD (%) IT-1 27 15 66 16 

IT-2 38 25 80 29 
IT-3 46 35 90 33 

FAR (%) IT-1 45 35 45 57 
IT-2 59 26 72 40 
IT-3 52 23 68 32 

CSI (%) IT-1 22 14 43 13 
IT-2 25 23 27 24 
IT-3 31 32 31 28 
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Table 2. The 46r1 CAMS-GACF performance in forecasting PM2.5 concentrations Malaysia-wide (Malaysia) and in the three 
regions. Performance was evaluated for all five time-horizon days. 

 ο̅ (µg m–3) f � (µg m–3) MB (µg m–3) RMSE (µg m–3) MNMB FGE R2 

Overall 17.6 14.3 –3.3 15.1 –0.28 0.51 0.36 
Peninsular 17.9 12.6 –5.2 12.0 –0.34 0.49 0.46 
Central 25.1 35.6 10.4 19.4 0.36 0.46 0.44 
Borneo 13.8 8.6 –5.2 18.6 –0.43 0.59 0.25 

ο̅ and f � are mean observed and forecasted PM2.5 concentrations over the study period, respectively. 

 

 
Fig. 3. The performance of 46r1 CAMS-GACF at each CAQMS (spatial characterisation): (a) mean observed and (b) mean 
forecasted PM2.5 concentrations, (c) MNMB, (d) FGE, and (e) R2. Performance was evaluated for all five time-horizon days. 

 
measures additive errors. The overall R2 is 0.36: 36% of the spatiotemporal variations in observed 
PM2.5 can be explained by the model. However, the R2 at Peninsular and Central were more than 
0.4, but was only 0.25 at Borneo. 

These regional differences were also evident in the forecasts’ spatial characters (Fig. 3). 
Forecasted PM2.5 looked evidently higher than observed around the Central region in Figs. 3(a) 
and 3(b), but vice versa elsewhere. Higher FGE were found at eastern Peninsular and central 
Borneo. The R2 at each CAQMS were generally high around 0.75, but certain CAQMS at the 
northern and eastern Peninsular and central Borneo had low R2; the temporal variations at these 
stations are not well represented in the forecasts. 

When aggregating model accuracy spatially for each day (temporal characterisation), there 
were some temporal variations in MNMB Malaysia-wide and in the three regions (Fig. 4). FGE 
remained relatively constant except in Central and Borneo, at which FGE were slightly higher and 
lower during INMs, respectively. Malaysia-wide daily spatial R2 were consistent around 0.3, 
similar to the total R2, except during the 2019 haze episode and the March 2020 INM when R2 
were lower. Regionally, spatial R2 were generally lower and had more temporal variations than 
Malaysia-wide R2. Peninsular generally followed the Malaysia-wide trend in spatial R2. Central  
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Fig. 4. The performance of 46r1 CAMS-GACF at each day (temporal characterisation) Malaysia-wide (overall) and in the three 
regions: (a) observed (green) and forecasted (yellow) PM2.5 concentrations, (b) MNMB, (c) FGE, and (d) R2 (thin line – daily data; 
thick line – 31-day running-average; shaded background – SWM/NEM; unshaded – INM). Performance was evaluated for all five 
time-horizon days. 

 
and Borneo R2 were around 0.1 but were higher during the end of the haze and during February–
March 2020. We also found anomalous overpredicted forecasts at Central from October to 
December 2019, causing high MNMB, FGE, and low R2 during these periods. This anomaly is only 
briefly discussed below (more information in SM5). 

Finally, overall diurnal variations in 120 hours of forecasted PM2.5 concentrations mostly fit the 
observations (Fig. 5). Forecasts were generally lower than observed throughout the whole day 
for all regions except Central, where night-time forecasts were higher. Regardless, the peaks in 
observed PM2.5 concentration at 9 am and 8 pm were not present in the forecasts.  
 
3.2 Non-haze and Haze Episodes 

Next, we compared CAMS-GACF performances during non-haze and haze episodes, with the 
results shown in Table S2. Firstly, the forecasts predicted exceedances better during haze than 
non-haze periods for all thresholds. POD, FAR, and CSI behaved as found above according to the 
different thresholds: overall, POD and CSI increased and FAR decreased (i.e., all improved) with 
more stringent PM2.5 thresholds Malaysia-wide and in the three regions during both non-haze 
and haze episodes. The forecasts predicted exceedances better using IT-3 during both periods.  

CAQMS recorded three times higher o̅ during haze (42.1 µg m–3) than non-haze periods (13.5 
µg m–3), while f � during both periods were lower (29.2 and 11.8 µg m–3, respectively). Accuracy 
patterns during both non-haze and haze episodes were found to be similar to the overall 
performance: there were negative (positive) biases during both periods in Peninsular and Borneo 
(Central). However, negative biases were more negative while positive biases were less positive 
during haze. Although errors (RMSE, FGE) were higher during haze than non-haze episodes in 
Peninsular and Borneo, R2 were higher during haze episodes across Malaysia and all regions.  

In spatial characterisation, patterns observed during both periods were similar to that of the 
overall performance above, with positive (negative) bias around the Central region (elsewhere) 
and FGE being higher at eastern Peninsular and Borneo (Fig. 6). R2 were visibly higher at all except 
a few CAQMS during the haze episode, suggesting that temporal variations were better 
represented in the forecasts during haze than non-haze periods. 
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Fig. 5. Averaged diurnal variations in observed (green) and 120 hours of 46r1 model forecasted 
(yellow) PM2.5 concentrations Malaysia-wide (overall) and in the three regions during all periods 
(overall), non-haze periods, and the 2019 haze. 

 
Lastly, the overall forecasts’ diurnal variation largely followed that of the observed during both 

haze and non-haze periods (Fig. 5). However, the forecasted rise in PM2.5 concentrations during 
haze from normal levels was less than the observed rise (also found in Table S2). Besides that, 
forecasts at Central overestimated the rise in night-time concentration from daytime during 
haze, while underestimated the rise at Borneo.  
 
3.3 Time-horizon Days 

To assess how forecast accuracy varies with forecast time-horizon, Fig. S2 shows the results of 
the exceedance analysis (using IT-3) and accuracy analysis, segregated by different time-horizon 
days. In general, the first time-horizon day (F1) i.e., the first 24 hours of the forecasts, performed 
the best while the last time-horizon day (F5) performed the worst. Looking at the exceedance 
metrics, POD and CSI increased and FAR decreased (i.e., all improved) with decreasing time-horizons 
(from F5 to F1). All regions followed the same trend, except in Central where FAR increased and  
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Fig. 6. The performance of 46r1 CAMS-GACF at each CAQMS (spatial characterisation) during non-haze and haze episodes: 
(a) mean observed and (b) mean forecasted PM2.5 concentrations, (c) MNMB, (d) FGE, and (e) R2. Performance was evaluated 
for all five time-horizon days. 

 
CSI decreased (i.e., both worsened) with decreasing time-horizons instead. Similar patterns were 
observed for IT-1 and IT-2. 

From the accuracy analysis, biases increased with decreasing time-horizons—forecasts at 
Peninsular and Borneo were less underpredicted, while forecasts at Central were more overpredicted. 
While errors decreased with decreasing time-horizons for most regions, they were the lowest at 
F2 and F3 in Central instead of F1. R2 also increased with decreasing time-horizons, but R2 at 
Peninsular and Central were highest at F2.  

Comparing the time-horizons temporally (Fig. S3), the forecasted concentration tended to 
increase with decreasing time-horizons, i.e., forecasts made more recently tended to be higher 
than those made further back in the past. In fact, forecasted PM2.5 appeared to move closer to 
the observed with decreasing time-horizons. This F1–F5 gap was more pronounced during the 
2019 haze than during non-haze and reflects the forecasts’ diurnal variations (Fig. S4). Nevertheless, 
F1 forecasts in Central appeared distinctly higher than forecasts made at other time-horizons 
during both haze and non-haze periods, particularly at night when forecasted PM2.5 were much 
higher than other time-horizons. 
 
3.4 Model Versions 

Finally, we compared the performances of the three different model versions within our study 
period, i.e., 43r3, 45r1, and 46r1 (Table S3). Recall that there were no severe haze episodes 
occurring during cycles 43r3 and 45r1; only non-haze periods were compared. In general, both 
POD and FAR decreased (i.e., worsened and improved, respectively) with each new model version. 
To untangle this opposing trend, we used the CSI to determine ‘good’ or ‘bad’ model forecasts. 
Overall, 45r1 performed the best, followed by 46r1. However, the version that produced the best 
forecasts differed for different regions: 45r1 for Central and Borneo, and 46r1 for Peninsular.  

Looking at the accuracy metrics, the 43r3 and 45r1 forecasts overall overpredicted PM2.5 
concentrations, while 46r1 forecasts overall underpredicted PM2.5 concentrations. While RMSE 
were higher for 43r3 and 45r1, FGE of 46r1 was higher (again, lower forecasts tend to have higher 
FGE). 43r3 forecasts had the highest R2, while R2 of 45r1 and 46r1 were similar. However, regionally, 
45r1 forecasts’ R2 was higher than 46r1 in Borneo, but vice versa elsewhere. Regionally, biases 
were positive (overprediction) at all regions for 43r3 and 45r1; only 46r1 produced forecasts with 
negative biases (underprediction) at Peninsular and Borneo. Errors generally increased in Peninsular 
and Borneo and decreased in Central with each new version.  

non-haze

haze

0

20

40

60

80

Obs (µg/m³)

A

non-haze

haze

0

20

40

60

80

Frc (µg/m³)

B

non-haze

haze

-2

-1

0

1

2
MNMB

C

non-haze

haze

0.0

0.5

1.0

1.5

2.0
FGE

D

non-haze

haze

0.00

0.25

0.50

0.75

1.00
R²

E

https://doi.org/10.4209/aaqr.220444
https://aaqr.org/
https://doi.org/10.4209/aaqr.220444
https://doi.org/10.4209/aaqr.220444
https://doi.org/10.4209/aaqr.220444


ORIGINAL RESEARCH 
 https://doi.org/10.4209/aaqr.220444 

Aerosol and Air Quality Research | https://aaqr.org 11 of 19 Volume 23 | Issue 9 | 220444 

 
Fig. 7. Averaged diurnal variations in observed (green) and 120 hours of forecasted (yellow) PM2.5 
concentrations from three different model versions (43r3, 45r1, 46r1) throughout Malaysia 
(overall) and in the three regions during non-haze periods. 

 
Spatially, there were obvious changes with the 46r1 upgrade (Fig. S5). Firstly, as noted above, 

there was a switch from overprediction to underprediction at most CAQMS. Similarly, FGE was 
higher at areas that were previously low (eastern Peninsular, Borneo etc.), and were lower at 
areas previously high (Central), probably due to the lowered PM2.5 forecasts. Lastly, R2 were lower 
at most CAQMS, suggesting that forecasts from the 46r1 model captured less of the temporal 
variations at most places than past versions.  

Finally, the diurnal variations of cycle 46r1 were distinct from that of past versions, with lower 
night-time forecasted PM2.5 concentrations across all regions (Fig. 7). In fact, the diurnal cycle in 
46r1 forecasts fitted observations better than past versions. Nevertheless, 46r1 still overpredicted 
night-time PM2.5 in Central, but to a lesser degree than past versions. The observed morning and 
evening PM2.5 peaks were not captured in all three versions. 

 

4 DISCUSSION 
 

4.1 Exceedances and Early Warnings 
Firstly, we assessed CAMS-GACF fitness for use in the policy domain, such as in early-warning 

systems and the broader scope of PM2.5 management. Malaysia-wide, CAMS-GACF performed best 
in the exceedance analysis during both haze and non-haze periods when delineating exceedance 
levels using IT-3 (35 µg m–3), the newer MAAQS. This suggests the introduction of the new 
MAAQS, as well as its promising health benefits, would be associated with improved CAMS-GACF 
performance in predicting exceedances of PM2.5 in Malaysia. However, overall CAMS-GACF 
performed less well during non-haze periods (8% CSI), with an exceedance performance worse 
than found for regional CTMs and statistical forecasting models in other countries (38–54% CSI) 
(Celis et al., 2022; Cho et al., 2021; Huang et al., 2017) (see SM6). In contrast, CAMS-GACF performed 
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on-par or better (44% CSI) than these studies during haze episodes (20–54% CSI), when PM2.5 
levels are elevated and forecasts are of most value. The weaker performance of CAMS-GACF 
during non-haze periods should thus not devalue its potential in providing early warnings of 
extreme PM2.5 events in Malaysia. 
 
4.2 Characteristics of CAMS-GACF in Malaysia 

In terms of accuracy analysis, CAMS-GACF performance in Malaysia (MB = –3.3 µg m–3, MNMB 
= –0.28, RMSE = 15.1 µg m–3, FGE = 0.51, R2 = 0.36) is poorer than its performances in mid-latitude 
settings like Europe, United States, and China that has lower biases and errors and higher R2 
(MBmedian = –1.6 µg m–3, MNMBmedian = –0.13, RMSEmedian = 3.7 µg m–3, FGEmedian = 0.32, R2

median = 
0.44) (CAMS, 2022; Wu et al., 2020). The global CAMS-GACF also performed poorer in Malaysia 
than many regional CTMs in other countries that has higher R2 (0.39–0.79) (Huang et al., 2017; 
Lyu et al., 2017; Neal et al., 2014; Savage et al., 2013) (see full comparison in SM7). To scrutinise 
this difference, we highlight key characteristics of CAMS-GACF in Malaysia in three subsections 
below. 
 
4.2.1 Large- and small-scale variability 

CAMS-GACF performed as expected for a global model forecast—it performed better at larger 
spatiotemporal scales than at smaller ones. We assessed this using the R2 metric, which measures 
the proportion of variability explained by the forecasts. We found higher Malaysia-wide spatial 
R2 (in temporal characterisation) than for the smaller regions of Malaysia at most times. The 40 km 
and 10 km resolutions of CAMS-IFS and its emission inventories hinder representation of processes 
with smaller spatial-scales which often affect local-scale variations in PM2.5. 

The reduced robustness of CAMS-GACF at local scales is limited to the spatial dimension. R2 
was not improved by removing the temporal component from the data through temporal 
characterisation. Rather, Malaysia-wide total R2 was lower than the regional ones; and regional 
total R2 were lower than local ones (i.e., at individual CAQMS). Hence, a large proportion of the 
reduced robustness (or R2) at local scales can be attributed to poor representation of Malaysia’s 
PM2.5 spatial heterogeneity in the forecasts.  

Nevertheless, some temporal variations were also not accounted for in the forecasts. MNMB 
and FGE showed some intra-annual variations, while the diurnal variations and the local-scale 
processes affecting it (e.g., traffic peaks) were poorly captured by the forecasts. This conformed 
to other studies that also used CAMS products (Varga-Balogh et al., 2020; Wu et al., 2020). However, 
the poor intra-annual temporal representation is only limited to CAQMS in eastern Peninsular 
and central Borneo with high FGE and low temporal R2.  

Conversely, larger scale variability was captured by the forecast. The forecast performed better 
in all regions in terms of R2 during haze than non-haze periods. This highlights the key strength 
of CAMS-IFS in that emissions from fires are captured through GFAS and their regional transport 
are modelled well.  

 
4.2.2 Emission sources and diurnal cycle 

Our analysis also showed the differing accuracy of CAMS-GACF between periods where PM2.5 
pollution is either most influenced by local or external emission sources. For example, during the 
2019 transboundary haze event, with external sources dominant, the Central region PM2.5 was 
less overpredicted (i.e., improved accuracy) while elsewhere became more underpredicted (i.e., 
less accurate). R2 was also higher during the 2019 haze than non-haze periods. We can make two 
related deductions: (1) 46r1 CAMS-IFS underestimated the amount of PM2.5 transported away 
from pollution sources, and would underpredict PM2.5 concentrations during transboundary haze 
and overpredict when local pollution is dominant; and (2) CAMS-IFS can forecast well regional-
scale PM2.5 pollution like the 2019 transboundary haze, but is less adept at forecasting non-haze 
periods when local factors dominate. This conformed to our exceedance analysis results, in that 
CAMS-GACF can detect major transboundary haze but not regular, minor locally driven exceedances.  

CAMS-GACF also overpredicted PM2.5 in Central during both haze and non-haze periods, but 
underpredicted elsewhere. Wu et al. (2020) also found similar overprediction for more populous 
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and polluted areas in China. CAMS-GACF appeared to overestimate the retention of PM2.5 at 
pollution sources. The night-time overprediction only in the urban, more polluted Central region 
points towards inaccurate diurnal modelling of a nocturnal inversion layer (NIL). NIL can inhibit 
vertical mixing and cause accumulation of pollutants on the surface at night. Figs. S8 and S9 
reinforce the hypothesis on NIL modelling, where greater PM2.5 retention was found for areas 
with higher emissions in Central and Peninsular. While high observed night-time PM2.5 is theoretically 
possible in the Central region, local-scale processes (e.g., potentially greater rainfall, shorter-lasting 
or less shallow NIL than modelled) probably caused lower observed night-time PM2.5 (Sani, 1977). 
Similarly, CAMS-IFS uses extrapolated monthly emission inventories which are likely unrepresentative 
of current emissions in Malaysia. Diurnal emissions are also likely modelled through a simple 
function that did not capture local reality. Again, CAMS-IFS and its inventories are not designed 
to capture these local-scale processes. This finding is consistent with past CAMS-related studies 
(Marécal et al., 2015; Wu et al., 2020). 
 
4.2.3 Assimilation across time-horizons 

The difference in forecasts between time-horizon days can likely be attributed to the 4D-Var 
assimilation in CAMS-IFS. As forecast time-horizon decreases (i.e., F5 to F1), forecasted PM2.5 
concentration agrees better with observations (Fig. S3). F1 forecasts performed the best, which 
is expected of any forecasts that employ data assimilation. The F1–F5 gap showed improvements 
in forecasts due to assimilation—if no gap was observed i.e., similar forecasts produced over five 
days, either the forecasts were accurate, or there are insufficient satellite observations that can 
be assimilated. The wider F1–F5 gap during haze suggests that haze forecasts were most benefited 
by the assimilation system. Since the gap is present for all regions at most times, it suggests useful 
satellite observations e.g., from MODIS (Benedetti et al., 2009; Rémy et al., 2019), commonly 
exist in the region. However, periods like the March INMs and regions like Central and Borneo with 
poor spatial R2 might be suffering from poor satellite observations (e.g., due to cloud cover). Wu 
et al. (2020) also found increasing accuracies from F5 to F1 but with an evident diurnal variation 
(also seen in this study). Satellite assimilation might not be sufficient to improve diurnal variations 
of PM2.5 concentrations, particularly at night when aerosol-related observations are poor or 
unavailable. 

Peculiarly, F2 and F3 forecasts were better than F1 in Central despite data assimilation. The 
higher PM2.5 forecasted during F1 were mainly caused by the higher night-time forecasts, pointing 
again to a problem with diurnal and NIL modelling, satellite AOD assimilation methods (e.g., 
vertical distributions that amplify modelled night-time concentrations), and/or erroneous emission 
inventories. These issues might also be the cause of the October–December 2019 anomaly. 
However, the sudden change in PM2.5 forecasts right on 1st January 2020 is more indicative of a 
change in emission inventory, though the true cause remains uncertain (see details in SM5). 
 
4.3 Past and Future Performances 

Finally in this section, we assess the implications of the model upgrades for the prospect of 
using CAMS-GACF for PM2.5 forecasts in Malaysia. Among the three model versions we studied, 
cycle 45r1 performed the best when we considered only ‘non-haze’ periods. However, a minor 
transboundary haze not defined in this study as a ‘haze episode’ occurred during 45r1 operation 
and might inflate performance. Cycle 45r1 may also have been more calibrated after continual 
upgrades (hence, more accurate) before a major change that was 46r1. Nevertheless, regional R2 
of 46r1 forecasts at Peninsular and Central regions were higher than 45r1 despite lower R2 at each 
CAQMS, suggesting that spatial variations of PM2.5 in Peninsular and Central were better represented 
with the newer CAMS-IFS version. The opposite was true for Borneo. Regardless, 46r1 improved 
PM2.5 forecasts through an improved diurnal cycle. While poor diurnal representation still persists 
in more urban and/or polluted environments, it was improved in other regions (e.g., from changes 
leading to better particle-size binning, better emission, chemistry, and deposition diurnal cycles). 

Given CAMS-GACF past changes, we can expect frequent upgrades to the forecasting system. 
Since at the time of writing 46r1 is no longer the newest version, some characteristics highlighted 
in this study might change (see SM5). Nevertheless, we can expect CAMS-GACF to improve in the 
future.  
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4.4 Recommendations 
Overall, we found that CAMS-GACF performance was weaker in Malaysia than is reported in 

other studies, focused on different countries and/or with different forecasting models, in both 
exceedance and accuracy analyses. CAMS-GACF cannot be expected to capture local-scale 
variability, which hinders accurate forecasting of PM2.5 pollution that normally have both regional 
and local influences. Nevertheless, CAMS-GACF performed on par or better than forecasts from 
those studies when we consider haze periods only, can capture regional-scale PM2.5 variability, 
employs data assimilation to improve forecasts, and provides suitable forecasting time-horizons 
for timely decision-making. It is thus interesting to provide some recommendations on how best 
to take advantage of CAMS-GACF despite its shortcomings.  

Firstly, we recommend development of a robust early-warning system for use in Malaysia. 
CAMS-GACF should not be used as the sole information for early warning, with 100% confidence 
given to the forecasts. Confidence of the forecasts depends on the forecasts’ systematic errors 
(which can be reduced via local bias-correction; see below) and on other auxiliary information (e.g., 
known hotspot locations, consistent exceedances predicted by most time-horizons). Uncertainty 
from forecast background cannot be reduced, only quantified based on human interpretation 
and/or good early-warning framework incorporating relevant auxiliary information (Doswell, 2004; 
Gerapetritis and Pelissier, 2004). Early warnings are then issued when confidence of exceedance 
events exceeds a threshold defined based on early-warning goals, the basic units (e.g., CAMQS, 
district, states), and the evaluation metrics (e.g., CSI, potential economic loss prevented by 
warnings). With a robust early-warning system in place, CAMS-GACF can contribute to improved 
early warnings’ performance than reported here simply as exceedances, even without bias-
correction.  

Secondly, CAMS-GACF can be improved by incorporating the uncaptured local-scale variability 
via local bias-correction techniques. Being a global model, CAMS-GACF will not change to capture 
local-scale variability in the foreseeable future. Hence, the influences of local-scale processes can 
be incorporated via two methods. First, we can downscale CAMS-IFS by using a regional/local CTM. 
Cho et al. (2021) downscaled CAMS-IFS output via a regional CTM and found satisfactory results. 
Second, we can incorporate local-scale variability via statistical techniques. Many studies employ 
this method, ranging from simple statistical models like regression linking past forecasts/biases 
to future (corrected) forecasts (Konovalov et al., 2009), to more complex frameworks classifying 
forecasts to past analogues and associated bias-correction models (Huang et al., 2017; Lyu et al., 
2017; Neal et al., 2014). These studies reported improved performance, particularly in correcting 
over- and underpredictions. Therefore, we recommend exploration of downscaling CAMS-GACF 
using a regional CTM, and of correcting the resulting bias via statistical models and bias-correction 
frameworks. Statistical and ML models used in Malaysia-focused forecasting studies (Koo et al., 
2020; Lim et al., 2008; Wong et al., 2021) can be repurposed for the latter. Regardless of the 
correction methods, model users that wish to derive maximum benefits from CAMS-GACF might 
want to prioritise the improvements at more polluted and populous regions like Central, while 
those that wish to improve overall CAMS-GACF accuracy might want to prioritise improvements 
at Borneo and eastern Peninsular where FGE were high. 

Finally, some additional considerations were provided. Since PM2.5 chemical composition can 
be used to determine its source(s) (Adam et al., 2021), forecasted and observed composition can 
aid in both early warnings and bias-corrections as auxiliary information. Similarly, since PM (as 
aerosols) and meteorology are interdependent (Adam et al., 2021; Dahari et al., 2020; Ku Yusof 
et al., 2019; Sobri et al., 2021), existing weather forecasting and PM2.5 forecasting are synergistic 
and can mutually improve each forecast. Finally, due to CAMS-IFS frequent upgrades, we recommend 
developing robust early-warning systems and simple bias-correction frameworks that ensure 
easy re-calibration to new upgrades. The forecast analogue approach might help in this regard. 
 

5 CONCLUSION 
 

In this study, we evaluated the performance of a global mechanistic CTM forecast, CAMS-GACF, in 
forecasting PM2.5 in Malaysia qualitatively and quantitatively. It provided a regional outlook on 
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CAMS-GACF PM2.5 forecasting performance in Malaysia for the first time. In summary, the change 
in MAAQS would not jeopardise but rather improve CAMS-GACF performance in predicting 
exceedance events. The model performed slightly worse than forecasting models used in other 
countries, but it performed on-par or better when forecasting is of most value, i.e., during the 
2019 haze event. Accuracy-wise, CAMS-GACF performed worse in Malaysia than in other countries. It 
tended to overpredict PM2.5 in polluted urban areas but underpredict elsewhere, likely due to 
emission inventory limitations, and challenges in diurnal and NIL modelling. Data assimilation of 
CAMS-IFS has proved effective, with improving forecasts from F5 to F1; haze forecasts benefited 
most from this feature. However, CAMS-GACF performed poorly at small scales in Malaysia, 
particularly in the spatial dimension. Short-term temporal variations were also not fully represented 
in the forecasts, particularly in the diurnal variations in polluted urban areas. CAMS-GACF also 
performed poorly when forecasting local pollution and exceedances. Nevertheless, CAMS-IFS 
receives frequent upgrades, and we can expect improvements to PM2.5 forecasts in Malaysia in 
the future.  

PM2.5 is a dangerous and prevalent pollutant in Malaysia that has both local and external factors 
influencing its concentrations. Currently, Malaysia only issues air quality deterioration warnings 
based on observed concentrations (Wong et al., 2021). Preventive warnings based on forecasts 
can benefit Malaysia in mitigating the impacts of elevated PM2.5

 by allowing governments and 
individuals to plan for exceedances (Celis et al., 2022; Lyu et al., 2017). CAMS-GACF is suitable for 
forecasting PM2.5, with relevant time-horizons for decision-making and its considerations of regional 
processes. Hence, we provided recommendations to allow us to take advantage of CAMS-GACF 
despite its shortcomings: (1) develop a robust early-warning system around CAMS-GACF to 
maximise early warning efficacies; and (2) correct inaccuracies of CAMS-GACF via downscaling 
and utilising statistical bias-correction techniques. Potential focus areas and synergies were also 
highlighted.  

This study provides a comprehensive initial review on CAMS-GACF performance in forecasting 
PM2.5 in Malaysia. Future studies should further quantify the degree CAMS-GACF capture local-
scale variations by scrutinising forecasts at individual CAQMS (particularly on the diurnal variations), 
and the improvements after applying bias-correction techniques recommended above. Future 
studies should also evaluate CAMS-GACF performances in forecasting PM2.5 composition species, 
and indeed for other air pollutants. If the outcomes are satisfactory, CAMS-GACF could form the 
basis for a working air quality forecasting system for Malaysia. 
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