Seok Won Kang, Sumin Lee, Jiyou Kwoun, Tae Jung Lee, Young Min Jo This email address is being protected from spambots. You need JavaScript enabled to view it.

Department of Applied Environmental Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea


Received: September 28, 2022
Revised: November 25, 2022
Accepted: January 3, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.220335  

  • Download: PDF


Cite this article:

Kang, S.W., Lee, S., Kwoun, J., Lee, T.J., Jo, Y.M. (2023). Analysis of Harmful Heavy Metals and Carbonaceous Components in Urban School PM2.5. Aerosol Air Qual. Res. 23, 220335. https://doi.org/10.4209/aaqr.220335


HIGHLIGHTS

  • Metals and carbon in large city school PM2.5 appear a consistent correlation.
  • Manganese was the most prevalent heavy metal with a concentration of 0.018 µg m3.
  • Statistical analysis supports the presence of unequivocal indoor OC sources.
  • Current field study provides valuable data for school children's health care policy.
 

ABSTRACT


Harmful heavy metals and carbonaceous substances contained in PM2.5 collected from 53 schools located in large Korean cities were closely analyzed based on the hypothesis that emission sources such as automobiles are coincident. The average concentration of PM2.5 from the analysis of all classrooms was 20.7 µg m–3. Mn was the most prevalent heavy metal with a concentration of 0.018 µg m–3, followed by Pb and Cu. The heavy metals were closely related to elemental carbon (EC) introduced mainly from the outside with a correlation coefficient of 0.556, showing consistent significance. Organic carbon (OC) showed a correlation coefficient of 0.357, which statistically supported the presence of obvious OC sources in the classroom. Overall school classroom contamination levels have been shown to be below national guideline.


Keywords: PM2.5, Heavy metals, Indoor air quality, Carbonaceous elements




Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

6.5
2021CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2021 Impact Factor: 4.53
5-Year Impact Factor: 3.668

Aerosol and Air Quality Research partners with Publons

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.