Sheng-Lun Lin This email address is being protected from spambots. You need JavaScript enabled to view it.1, Hongjie Zhang1, Ming-Yeng Lin2, Shih-Wei Huang This email address is being protected from spambots. You need JavaScript enabled to view it.3,4 1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
3 Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung 83347, Taiwan
4 Center for Environmental Toxin and Emerging-contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan
Received:
September 23, 2022
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Revised:
January 28, 2023
Accepted:
February 22, 2023
Download Citation:
||https://doi.org/10.4209/aaqr.220331
Lin, S.L., Zhang, H., Lin, M.Y., Huang, S.W. (2023). The Unignorable Near-ground PM2.5, UFP, PAHs, and BC Levels around a Traffic Prohibited Night Market. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr.220331
Cite this article:
In some special densely populated areas, the background atmospheric fine particulate matter (PM2.5) concentration is very high, which makes near-ground (NG) exposure a major problem endangering human health. In our study, the night market in Chiayi City was selected as the research object and collected the 24-hour PM2.5 samples through the federal reference method (FRM), characterizing the mass concentration, water-soluble ionic components, carbon specious, metal compositions and source contributions of PM2.5. To better analyze the contribution of traffic sources under different sampling conditions, the mobile real-time monitoring system was used to analyze the quality of NG-PM2.5, the number of ultra-fine particles (UFP), the concentration of black carbon (BC) and total polycyclic aromatic hydrocarbons (PAH) before and after the traffic restriction. Results indicated the concentration of PM2.5 was 7.26–58.6 mg m-3. In chemical analysis, secondary contents e.g., carbonaceous and ionic components accounted for ~60% of the PM2.5, supporting the importance of long-range transport. However, the traffic contribution accounted for ~30% and hardly changed between different samples, which was not conducive to source apportionment. Through traffic restriction, it was found that all kinds of pollutants increased significantly before restriction, and even after restriction, the concentrations of PM2.5 and BC increased 131% and 151% in low concentration season. In the high concentration season, the traffic restriction significantly reduced the NG-UFP and NG-PAH concentration by 27% and 55%, respectively, but NG-BC and NG-PM2.5 was almost unaffected. Therefore, besides the contribution of traffic source, emissions from cooking activities are very important for the increase of NG-PM2.5 levels in the night market area.HIGHLIGHTS
ABSTRACT
Keywords:
PM2.5, Source apportionment, Traffic restriction, Night market, Mobile monitoring