Supporting information for

The Role of Sulfur Emission from the Petroleum Industry on Ultrafine Particle Number Concentration in Singapore

Suyi Hou1†, Weihan Li1†, Liudongqing Yang2, Guorong Chen1,2, Yilin Zhang2,

and Mikinori Kuwata1,2*

1Department of Atmospheric and Oceanic Sciences and Laboratory for Climate and Ocean-Atmosphere Studies, School of Physics, Peking University, Beijing 100871, China

2Earth Observatory of Singapore and the Asian School of Environment, Nanyang Technological University, Singapore 639798

†: These authors equally contributed to the work

* To Whom Correspondence Should be Addressed

E-mail: kuwata@pku.edu.cn

Submitted to Aerosol and Air Quality Research
Figure S1 Relationship between number concentration of particles for the diameter (d_p) range of 14-190 nm ($N_{14-190nm}$) with that of 14-700 nm ($N_{14-700nm}$). The data were obtained April, 2019.

\[N_{14-190nm} = 0.96 \times N_{14-190nm} \]

$\left(r^2 = 0.93 \right)$

1:1 line
Figure S2 Relationship between ΔCO and ΔCO$_2$. The data points are color-coded by ΔCH$_4$/SO$_2$.
Figure S3 Correlations between concentrations of ultrafine particles and SO$_2$.