Xinyi Niu, Sergey A. Grinshpun This email address is being protected from spambots. You need JavaScript enabled to view it., Michael Yermakov, Roman Jandarov, Iliya Rivkin

Center for Health-Related Aerosol Studies, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0056, USA

Received: April 14, 2022
Revised: May 18, 2022
Accepted: May 22, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

  • Download: PDF

Cite this article:

Niu, X., Grinshpun, S.A., Yermakov, M., Jandarov, R,. Rivkin, I. (2022). Effect of Skin Protectants on the Total Inward Leakage of N95 Respirators: Testing with an Advanced Static Headform. Aerosol Air Qual. Res. 22, 220175.


  • The effect of skin protectants on the total inward leakage (TIL) was evaluated.
  • A standardized protocol utilizing a breathing manikin was deployed.
  • TIL depends on the interaction of the protectant, flow rate and respirator model.
  • Application of skin protectants may significantly impact the respirator performance.
  • Skin protectants may decrease TIL for some respirators but increase it for others.


The COVID-19 pandemic introduced considerable challenges for respiratory protection of different population groups. Disposable medical masks and NIOSH-approved N95 filtering facepiece respirators (FFRs) are typically their only defense against the virus. At the same time, continuous wearing of these devices, especially some N95 FFR models cause damage to the facial skin, such as skin irritation, swelling, and scaling. Skin protectants are becoming increasingly popular and effective in providing a protective barrier for the skin that reduces direct contact between a wearer’s face and respirator. Recent pilot studies involving human subjects have examined the effect of skin protectants on the performance of respirators/masks through fit testing, but their findings are heavily impacted by between-subject variability. This investigation deployed a standardized protocol that utilized the NIOSH advanced static manikin headform connected to a Breathing Recording and Simulation System (BRSS), producing a predetermined breathing pattern. The effect of skin protectants on the total inward leakage (TIL) was evaluated for three N95 FFR models, five different skin protectants, and two breathing flow rates. The aerosol particle concentrations inside and outside the respirator were measured with NaCl serving as the challenge aerosol. The TIL was shown to be significantly affected by the interaction of the skin protectant type, breathing flow rate and FFR models. The data suggest that different skin protectants may influence the performance of disposable N95 FFRs in different ways - by either increasing or decreasing the TIL value relative to one with no skin protectants applied. No negative effects on the TIL was observed for either tape- or gel/cream-type protectants when testing with 3M 8210 or 3M 1870+ FFRs; however, the use of skin protectants of either group with the AOSafety 1050 FFR may compromise its performance as quantified by the TIL.

Keywords: 95 respirator, Skin protectant, Total inward leakage (TIL), Manikin, Breathing simulator

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

Aerosol and Air Quality Research partners with Publons

Aerosol and Air Quality Research partners with Publons

2020 Impact Factor: 3.063
5-Year Impact Factor: 2.857

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.