Subraham Singh1, Glen Johnson1, David W. DuBois2, Ilias G. Kavouras  This email address is being protected from spambots. You need JavaScript enabled to view it.1 

1 Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
2 Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA


Received: March 9, 2022
Revised: May 19, 2022
Accepted: June 7, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.220121  

  • Download: PDF


Cite this article:

Singh, S., Johnson, G., DuBois, D.W., Kavouras, I.G. (2022). Assessment of the Contribution of Local and Regional Biomass Burning on PM2.5 in New York/New Jersey Metropolitan Area. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr.220121


HIGHLIGHTS

  • PM2.5 mass concentrations have been declining due to decreasing secondary sulfate.
  • Biomass burning was the predominant PM2.5 source in metropolitan NY/NJ area.
  • Primary and secondary fine particles associated with traffic emissions did change over time.
 

ABSTRACT 


The sources of fine particulate matter (PM2.5, particles with diameter < 2.5 μm) in four monitoring sites in the New York/New Jersey metropolitan statistical area from 2007 to 2017 was apportioned by positive matrix factorization (PMF) of chemical speciation data. Biomass burning, secondary inorganic (i.e., ammonium sulfate and nitrate) and primary traffic exhausts were the predominant PM2.5 sources. The declining trends of PM2.5 mass in all four sites were very well correlated with decreasing secondary sulfate levels due to SO2 emission reductions by coal-fired power plants. The contributions of secondary nitrate, primary traffic exhausts and diesel particles did not change (or slightly increased) over time except for the Queens site, where statistically significant declines were computed. Biomass burning contributions increased in the Queens and Chester sites but declined in the Division Str and Elizabeth Lab sites, although significant interannual variability was observed. Wintertime biomass burning aerosols were most likely due to combustion of contemporary biomass for industrial and domestic heating, and it was linked to the intensity (average minimum temperature) and duration (number of freezing days) of cold weather. The annual summertime biomass burning contributions were correlated with the number and area burnt by lightning-ignited wildfires. These results indicate that PM2.5 sources in urban environments is changing from anthropogenic secondary sulfate and nitrate to carbonaceous aerosol from local anthropogenic and regional climate-driven biomass burning. This trend may counterbalance emissions controls on anthropogenic activities and modify the biological and toxicological responses and resultant health effects.


Keywords: Fine aerosol, Sources, Wildfires, Woodburning, Traffic




Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.