Dillon Streuber1, Yoo Min Park2, Sinan Sousan This email address is being protected from spambots. You need JavaScript enabled to view it.3,4 1 Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC 27858, USA
2 Department of Geography, Planning, and Environment, East Carolina University, Greenville, NC 27858, USA
3 Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
4 North Carolina Agromedicine Institute, Greenville, NC 27834, USA
Received:
March 8, 2022
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Revised:
May 25, 2022
Accepted:
May 29, 2022
Download Citation:
||https://doi.org/10.4209/aaqr.220119
Streuber, D., Park, Y.M., Sousan, S. (2022). Laboratory and Field Evaluations of the GeoAir2 Air Quality Monitor for Use in Indoor Environments. Aerosol Air Qual. Res. 22, 220119. https://doi.org/10.4209/aaqr.220119
Cite this article:
Low-cost aerosol sensors open routes to exposure assessment and air monitoring in various indoor and outdoor environments. This study evaluated the accuracy of GeoAir2––a recently developed low-cost particulate matter (PM) monitor––using two types of aerosols (salt and dust), and the effect of changes in relative humidity on its measurements in laboratory settings. For the accuracy experiments, 32 units of GeoAir2 were used, and for the humidity experiments, 3 units of GeoAir2 were used, alongside the OPC-N3 low-cost sensor and MiniWRAS reference instrument. The normal distribution of slopes between the salt and dust aerosols was compared for the accuracy experiments. In addition, the performance of GeoAir2 in indoor environments was evaluated compared to the pDR-1500 reference instrument by collocating GeoAir2 and pDR-1500 at three different homes for five days. For salt and dust aerosols smaller than 2.5 µm (PM2.5), both GeoAir2 (r = 0.96–0.99) and OPC-N3 (r = 0.98–0.99) were highly correlated with the MiniWRAS reference instrument. However, GeoAir2 was less influenced by changes in humidity than OPC-N3. While GeoAir2 reported an increase in mass concentrations ranging from 100% to 137% for low and high concentrations, an increase between 181% and 425% was observed for OPC-N3. The normal distribution of the slopes for the salt aerosols was narrower than dust aerosol, which shows closer slope similarities for salt aerosols. This study also found that GeoAir2 was highly correlated with the pDR-1500 reference instrument in indoor environments (r = 0.80–0.99). These results demonstrate potential for GeoAir2 for indoor air monitoring and exposure assessments.HIGHLIGHTS
ABSTRACT
Keywords:
Particulate matter, PM2.5, Indoor air quality, SPS30 sensor, PM humidity effects