Supplementary material

Aerosol opto-physical properties: Temporal variation, aerosol type discrimination and source identification

A.R. Kolhe1, G.R. Aher2•, P.S. Soyam3, S.D. Ralegankar4, S. Kedia5,
L. M. Chaudhari2, V. V. Antad2, S.D. Ghude6, P.D. Safai6,
S.D. Chakane1, P.C.S. Devara7

1Department of Physics, Arts, Science and Commerce College, Indapur, Pune, India
2Department of Physics, Nowrosjee Wadia College, Pune, India
3Department of Environmental Sciences, Savitribai Phule Pune University, Pune, India
4Department of Physics, Ahmednagar College, Ahmednagar, India
5Center for Development of Advanced Computing, Pune, India
6Indian Institute of Tropical Meteorology, Pashan, Pune, India
7Amity Centre for Ocean-Atmospheric Science and Technology, Amity University Haryana, India

•Corresponding Author: Dr. G. R. Aher
E-mail address: aher.g.r@gmail.com

(A) DATA, INSTRUMENTATION, AND ANALYSIS TECHNIQUE

Calibration of Microtops II Sun photometer

It is required to calibrate Sun photometers/multiple wavelengths solar radiometers at the pristine, mountain observational site (Ningombam et al., 2014; Dumka et al., 2020) having stable atmospheric conditions so that spectral optical excitation remains nearly same throughout the observing day. In the present work, the Microtops II Sun photometer has been calibrated at the mountain site Mt. Sinhagad situated to the North-West of Pune. During the calibration campaign, Microtops II sun photometer was operated at different optical air masses throughout the day under practically stable atmospheric and pristine sky conditions and Langley plots (a plot of signal voltage $\ln V(\lambda)$ against relative optical air mass) at 440, 500, 675, 870 and 1020 nm wavelengths were constructed. From these plots (Fig. S1), the ordinate intercept, $\ln V_0(\lambda)$ for each wavelength was determined by subjecting each Langley plot to linear
regression technique and the statistical metrics of each Langley plot are listed in Table S1. It is seen that at all the wavelength channels the magnitude of \(\ln V_0 \) is found to be significantly less than 1\% which highlights the stability of the instrument for AOD measurements (Table S1).

(B) RESULTS AND DISCUSSION

(i) Spectral variation of AOD

Spectral AOD is an essential parameter in determining the extent to which aerosols directly perturb the Earth-atmosphere radiation budget. It is found to depend on their columnar distribution, size spectrum, and refractive index (Pawar et al., 2012; Varpe et al., 2018). Fig.S1 shows the average AOD spectra over the site AC-Ahmednagar in winter and pre-monsoon seasons. As seen in Fig. S1, the length of vertical bars shows larger to smaller variation in AODs from shorter to longer wavelengths respectively during both seasons. The relatively strong wavelength dependence of AOD is evident in Fig. S1, which illustrates that AOD is higher at shorter wavelengths (\(\lambda < 0.6 \) \(\mu \text{m} \)). AOD gradually decreases towards longer wavelengths (\(\lambda > 0.6 \) \(\mu \text{m} \)) despite seasonal change attributed to the dominance of the fine-mode aerosols over coarse-mode aerosols at the observing site. Moreover, the spectral dependence of AOD is found to be decay type indicating the possibility of a similar kind of aerosol particle size distribution albeit variation in their columnar content based on AOD magnitude at each wavelength (More et al., 2013). According to Mie scattering theory (Quenzel et al., 1970), the occurrence of a higher columnar concentration of fine-mode aerosols in the atmosphere over the observing site cause wavelength-selective scattering of the solar irradiance producing higher AODs at the shorter wavelengths. Similarly, the coarse-mode aerosols provide likewise contributions to the AOD at both wavelengths (Schuster et al., 2006). In the multi-wavelength radiometer (MWR) studies over Dehradun (30°00’ N – 30°30’ N and 78°18’ E – 78°36’ E), Rana et al. (2009) have found
similar AOD spectral dependence during the pre-monsoon as well as the winter seasons as is reported in the present work. Ranjan et al. (2007) have reported spectral AOD measurements over Rajkot by employing Microtops II Sunphotometer during March 2005–March 2006. Their results portrayed AOD seasonal variations with high/low AODs in pre-monsoon/winter seasons. The study also reveals more AOD decrease at higher wavelengths as a consequence of the reduction in coarse-mode aerosols in the winter season while the AOD amplitude at longer wavelengths is seen to be higher during pre-monsoon season showing the substantial contribution of coarse-mode aerosols over fine-mode aerosols. The occurrence of high AODs at larger wavelengths during pre-monsoon season could be assigned to the dominance of coarse-mode particles due to prominent surface wind activity which causes lifting-up of the soil-dust from the dry surface into the atmosphere and the long-range transported mineral-dust from arid regions (Aher et al., 2014; Pawar et al., 2015). During the winter season, the frequency of the strong nocturnal inversions is normally high (Vernekar et al., 1993). Aerosols produced due to anthropogenic activities (e.g., vehicular emissions, domestic cooking, industrial emissions, etc.) are released into the surface layers and get trapped in the ABL due to less atmospheric ventilation (Kolhe et al., 2018). Further, the concentration of the soil dust aerosols is less during winter on account of calm weather conditions. As a result of this, AODs are comparatively higher at shorter wavelengths during winter as compared to those observed in the pre-monsoon season (Dani et al., 2012).

Beegum et al. (2008) have identified the impact of long-range advection of aerosols from the adjoining areas resulting in the significant variations in the AOD magnitudes and their wavelength dependence measured during March to May 2006 in the Integrated Campaigns for Aerosols, gases, and Radiation Budget (ICARB). Also, picking of dust aerosols by the prominent
convective eddies caused by the strong heating of the land surface (a meso-scale mechanism) could be the plausible reason behind the modulation of the observed AOD and its spectral variability (Moorthy et al., 2007).

(ii) Comparison of Microtops II Sunphotometer measured and MODIS retrieved AODs

The comparison of the ground-based AOD measurements with those retrieved from the satellite-based observations and thereby the assessment of satellite aerosol product retrievals has major theoretical as well as practical implications in the up-gradation of the retrieval algorithms and in climate research. The MODe rate resolution Imaging Spectroradiometer (MODIS) onboard Terra/Aqua satellite provides spectral information of aerosol parameters in the mid-visible wavelength region. Terra/Aqua satellites are operated at 705 km altitude with an equator crossing time of about 10:30/13:30 hr (IST). Recently, many researchers have performed clear and extensive studies on the validation of MODIS aerosol products (Chu et al., 2002; Ichokue et al., 2002; Levy et al., 2005, 2010; Bennouna et al., 2011; Bibi et al., 2015; Ma et. al., 2016; Vijayakumar et al., 2016; Ali et al., 2017; Wang et al., 2017a, 2017b; Boiyo et al., 2017; Gupta et al., 2018; Tian and Gao, 2019; Sharma et al., 2021). It is crucial for the individual researcher to choose MODIS retrieved aerosol products comprising of the realistic results based on the quantitative analysis of aerosol data and the comparison of different MODIS retrieved aerosol products. For comparison, MODIS retrieved AODs require to be spatio-temporally collocated with Microtops II AOD measurements. The collocation is needed since the MODIS sensor scan encompasses spatial coverage of the study area from the space whereas Microtops II is a ground-based point measurement. The objective of the spatio-temporal collocation process is to co-locate the air mass perceived by the MODIS sensor from
the space over the study location, which is concurrently observed by the ground-based Microtops II sensor. In the present study, the comparison of the Terra platform MODIS sensor DT-DB combined algorithm retrieved AOD (MOD04_3K_C6.1 (collection 6.1) retrieved from https://ladsweb.modaps.eosdis.nasa.gov/) is attempted by comparing it with ground-based Microtops II Sun photometer derived AOD data at the same wavelength. For achieving the realistic comparison between Microtops II and MODIS AODs, AODs for Microtops II at 550 nm has calculated by using the Ångström empirical formula (Eq. S1)

\[
AOD_{550\ nm} = AOD_{500\ nm} \times \left(\frac{550}{500}\right)^{-AE}
\]

(S1)

where, AE is the Ångström exponent estimated by employing linear regression technique to spectral AOD curve in the 440–870 nm spectral range (Pawar et al., 2015). The validation process consists of plotting of the collocated MODIS/Terra and Microtops II AODs on a 2-D scatter diagram and performing linear regression fit to the plotted data (More et al., 2013; Sayer et al., 2014; Wang et al., 2017a, 2017b; Boiyo et al., 2017; Sharma et al., 2021). Here, the scatter diagram of the Microtops II calculated AOD_{550\ nm} against MODIS/Terra Dark Target-Deep Blue combined (DT-DB) retrieved AOD_{550\ nm} is constructed and is shown in Fig. S3. The expected error (EE) envelope, determined from the MODIS/Terra 3-km DT/DB combined product over Land and Ocean, representing the percentages of the AOD retrievals falling within/above/below (PWE/PAE/PBE) the custom error range, is determined by employing Eq. (S2),

\[
EE = \pm(0.05 + 0.15 \times AOD_{\text{Microtops}})
\]

(S2)
The regression line is represented by the red solid line, the blue and green solid lines are above and below EE bounds respectively, and the black dashed line indicates the $X = Y$ line. The estimated y-intercepts and slopes for linear regression analysis are given in Eq. (S3),

$$AOD_{MODIS} = [AOD_{MicrotopsI} \times (1.09 \pm 0.05)] + (-0.01 \pm 0.02)$$ \hspace{1cm} (S3)

In this study, the following statistical parameters are used to quantitatively evaluate the consistency and uncertainty that may be prevalent in the Microtops-II and MODIS/Terra AOD retrievals: the Pearson’s correlation coefficient (r), the coefficient of determination (R^2), the mean absolute/absolute percentage error (MAE, Eq. (S4)), the root-mean-square error (RMSE, Eq. (S5)), and the relative mean bias (RMB, Eq. (S6)).

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |AOD_{(MODIS)i} - AOD_{(Microtops)i}|$$ \hspace{1cm} (S4)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (AOD_{(MODIS)i} - AOD_{(Microtops)i})^2}$$ \hspace{1cm} (S5)

$$RMB = \frac{AOD_{MODIS}}{AOD_{Microtops}}$$ \hspace{1cm} (S6)

As noticed from Fig. S3, the MODIS C6.1 DT-DB combined AODs depict a high correlation ($r = 0.87$, slope = 1.09 ± 0.05, RMSE = 0.08 and RMB = 1.06 with low MAE = 0.06) with Microtops ground measurements and very high accuracy (PWE = 82.7%), which is higher than the average global level (66%, Levy et al., 2010). Also, the figure demonstrates a significant overestimation over the study region with RMB (1.06) greater than 1.0, and PAE (11.3%) values. Significant overestimation in MODIS/Terra AOD retrievals in the presence of low and high aerosol loadings may be produced due to the errors in instrument calibration, surface reflectance assumptions, and aerosol models used for aerosol inversion algorithm (More et al., 2013; Sharma
et al., 2021). Also, mixing with non-absorbing fine mode aerosols from urban pollution (results in over-prediction of absorption) over AC-Ahmednagar may be one of the causes of overestimation of MODIS/Terra AOD (Nichol and Bilal, 2016). The estimated linear regression fit parameters viz., slope, intercept, r, and R² of the fit reveal a close agreement between AODs from Microtops II and MODIS/Terra.

REFERENCES

Tables

Table S1. Values of the factory generated and observed calibration constants (lnV₀) at each Microtops II channel with corresponding % deviation.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Wavelength (nm)</th>
<th>Factory lnV₀</th>
<th>Observed lnV₀</th>
<th>% Deviation of observed lnV₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td>440</td>
<td>6.917</td>
<td>6.9167</td>
<td>−0.004</td>
</tr>
<tr>
<td>Channel 2</td>
<td>500</td>
<td>6.762</td>
<td>6.7582</td>
<td>−0.056</td>
</tr>
<tr>
<td>Channel 3</td>
<td>675</td>
<td>6.939</td>
<td>6.9598</td>
<td>+0.298</td>
</tr>
<tr>
<td>Channel 4</td>
<td>870</td>
<td>6.555</td>
<td>6.5573</td>
<td>+0.035</td>
</tr>
<tr>
<td>Channel 5</td>
<td>1020</td>
<td>7.010</td>
<td>7.0213</td>
<td>+0.161</td>
</tr>
</tbody>
</table>

Figures

Fig. S1. The Langley plots, a plot of signal voltage lnV(λ) against relative optical air mass, at 440, 500, 675, 870, and 1020 nm wavelengths displaying linear regression equations obtained at each wavelength and the respective Pearson’s correlation coefficients (r).
Fig. S2. Spectral variation of AOD obtained from Microtops-II Sun-photometer for winter (black sphere) and pre-monsoon (red sphere) seasons.

![Graph showing spectral variation of AOD](image)

Fig. S3. 2-D scatter diagram of the collocated daily MODIS AOD$_{500}$ nm (calculated) against Microtops-II Sunphotometer measured AOD$_{500}$ nm at site AC-Ahmednagar for the period January 2016– May 2018.

![Graph showing 2-D scatter diagram](image)

- N = 133
- PWE = 82.7
- PAE = 11.3
- PBE = 6.0

- Equation: $y = a + bx$
- Intercept: -0.01 ± 0.02
- Slope: 1.09 ± 0.05
- Pearson's r: 0.87
- R^2 (COD): 0.75
- MAE: 0.06
- RMSE: 0.08
- RMB: 1.06