Special Issue on Air Pollution and its Impact in South and Southeast Asia (II)

Muhammad Miftahul Munir   1, Martin Adrian  1, Casmika Saputra  1, Puji Lestari  2

1 Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
2 Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia

Received: February 15, 2022
Revised: April 20, 2022
Accepted: April 24, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.4209/aaqr.220079  

Cite this article:

Munir, M.M., Adrian, M., Saputra, C., Lestari, P. (2022). Utilizing Low-cost Mobile Monitoring to Estimate the PM2.5 Inhaled Dose in Urban Environment. Aerosol Air Qual. Res. 22, 220079. https://doi.org/10.4209/aaqr.220079


  • PM2.5 mobile monitoring (MM) system was developed to improve spatial resolution.
  • A new method to determine the CV of the PM2.5 sensor reading was introduced.
  • The dependency of vehicle speed on PM2.5 sensor reading was observed.
  • MM could detect local PM2.5 source due to higher spatial resolution of measurement.
  • Children had inhaled dose of PM2.5 up to 6 times than that of other age groups.


This study has developed a compact, low-cost, and real-time mobile monitoring (MM) device for estimating the PM2.5 inhaled dose. The MM device consists of a low-cost PM2.5 sensor, temperature and humidity sensor, Wi-Fi module, and microcontroller unit. The MM system (carried on vehicle) has been used to measure PM2.5 concentration, geolocation, and meteorological factors during rush hour. To examine repeatability, a new method was proposed to calculate the coefficient of variance of the PM2.5 sensor reading. We used several vehicle speeds to evaluate its dependency on the PM2.5 sensor reading. A sensor cover was also introduced to prevent the airspeed effect during carried on the vehicle. In this study, mobile monitoring was performing in several areas. The measured PM2.5 concentration then used for estimating PM2.5 inhaled dose. The Monte Carlo technique was used to introduce the probabilistic of body weight and PM2.5 concentration. The result shows that the coefficient of variation of the PM2.5 sensor reading was 2% on average in 2 minutes. We found that vehicle speed and sensor cover affects the standard deviation of PM2.5 sensor reading. Statistical analysis shows that the on-road area (53 µg m–3) has higher PM2.5 concentration than residential area (41 µg m–3). The area around the toll gate where many trucks pass has a higher concentration of PM2.5. In addition, low variability on the meteorological factors caused weak relationship with the PM2.5 concentration. We found that children were estimated to receive a higher inhaled dose of PM2.5 than adults. Therefore, variations in the microenvironment and local pollution sources such as truck and food stalls are dominant factors that affect spatial variation of PM2.5. Real-time mobile monitoring can help the government make policy and give warnings to people traveling around polluted areas.

Keywords: Particulate matter, Low-cost sensor, PM sensor, Indonesia

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

81st percentile
Powered by

Aerosol and Air Quality Research partners with Publons

Special Call for Papers Air Pollution and its impact in South and Southeast Asia

2020 Impact Factor: 3.063
5-Year Impact Factor: 2.857

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.