Jie Zhang  1,2,3, John Liggio4, Tak W. Chan2,5, Lin Huang5, Jeffrey R. Brook This email address is being protected from spambots. You need JavaScript enabled to view it.4,6 

1 Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, Jiangsu 210000, China
2 Emissions Research and Measurement Section, Air Quality Research Division, Environment and Climate Change Canada, Ottawa, Ontario, K1A 0H3, Canada
3 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
4 Air Quality Research Section, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
5 Climate Chemistry Measurement and Research, Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
6 Dalla Lana School of Public Health and the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5T 1P8, Canada


Received: January 20, 2022
Revised: April 5, 2022
Accepted: April 28, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.220032  


Cite this article:

Zhang, J., Liggio, J., Chan, T.W., Huang, L., Brook, J.R. (2022). Gasoline Direct Injection Engine Emissions of OC and EC: Laboratory Comparisons with Port Fuel Injection Engine. Aerosol Air Qual. Res. 22, 220032. https://doi.org/10.4209/aaqr.220032


HIGHLIGHTS

  • OC obtained from different protocols is consistent with peak release temperature.
  • GDI vehicle had higher emissions under cold-start but not aggressive cycles.
  • The emissions from GDI vehicle were less volatile than PFI vehicle.
 

ABSTRACT


To better understand carbonaceous aerosol emissions from gasoline vehicles, a gasoline direct injection (GDI) vehicle with and without a gasoline particle filter (GPF) installed and a port fuel injection (PFI) vehicle were tested on a chassis dynamometer using standard emission drive cycles. Carbonaceous particles emitted from the vehicles were collected on quartz filters and analyzed using three different thermal optical protocols to assess the sensitivity of organic carbon (OC) and elemental carbon (EC) emission estimates to the methods, showing OC obtained by the IMPROVE and EC by the NIOSH protocol was the lowest. Compared to the PFI vehicle, the GDI vehicle had higher EC and OC emissions under cold-start cycles by 1415% and 46%, respectively. However, the OC emission from the PFI vehicle was higher than GDI during an aggressive driving cycle by 146%. By considering OC collected on a quartz filter behind a Teflon filter, the emissions from PFI vehicle were found to be more volatile than the GDI vehicle. This is consistent with the OC forming characteristics for GDI and PFI engines, which are pyrolyzed particles from incomplete combustion and incomplete volatilization of fuel droplets, respectively. Generally, the particle phase OC emissions from gasoline engines are more volatile than other sources (e.g., biomass burning), supported by the very low level of pyrolyzed organic carbon (POC) and small differences among protocols in the current study. Once the GDI vehicle was equipped with a GPF, the removal efficiency of EC was > 98%, but OC emissions could increase as a result of regeneration, suggesting that the effect of a GPF on total carbon emitted to the atmosphere needs further evaluation, especially considering the formation of secondary organic aerosol.


Keywords: Gasoline direct injection, Port fuel injection, OC, EC, Gasoline particle filter




Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

5.9
2020CiteScore
 
 
81st percentile
Powered by
Scopus


Aerosol and Air Quality Research partners with Publons

Special Call for Papers Air Pollution and its impact in South and Southeast Asia

2020 Impact Factor: 3.063
5-Year Impact Factor: 2.857

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.