Supporting Information

Co-based catalyst had good redox performance under low-temperature range but with low selectivity in high-temperature, while vanadium-based catalyst had good acidity with low activity in low-temperature condition. In order to obtain the superb activity of single layer, we optimized the CoCeO\textsubscript{x} catalyst series with oxidation ability and acidity. The characteristic results of CoCeO\textsubscript{x} series were shown in Fig. S1(a). With the increase of Ce doping, the catalytic propane oxidation activity decreased slightly. The overall catalytic activity was in order as followed: Co\textsubscript{0.9}Ce\textsubscript{0.1}O\textsubscript{x} > Co\textsubscript{0.8}Ce\textsubscript{0.2}O\textsubscript{x} > CoO\textsubscript{x} > CeO\textsubscript{x}. Moreover, we surveyed all samples to confirm the property including oxidation ability from H\textsubscript{2}-TPR and O\textsubscript{2} adsorption ability from O\textsubscript{2}-TPD, which was generally seen as the origin for catalytic oxidation. It could be found that all results indicated that Co\textsubscript{0.9}Ce\textsubscript{0.1}O\textsubscript{x} performed the most suitable property with highest peak in low temperature H\textsubscript{2} reduction and top peak area in O\textsubscript{2} desorption.

![Fig. S1](image)

Fig. S1 (a) Catalytic activity of CoCeO\textsubscript{x} series catalysts for propane oxidation (Zhang et al., 2019). (b) H\textsubscript{2}-TPR of CoCeO\textsubscript{x} series catalysts, (c) O\textsubscript{2}-TPD of CoCeO\textsubscript{x} series catalysts
Fig. S2 (a) TEM image of Co$_3$O$_4$; (b) TEM image of Co$_{0.9}$Ce$_{0.1}$O$_x$; The electron diffraction image (SAED) and fast Fourier transform image (FFT) of the selected area are on the right and upper right corners of (a) and (b), respectively.

Fig. S3 (a) SEM image of Co$_3$O$_4$; (b) SEM image of Co$_{0.9}$Ce$_{0.1}$O$_x$;