Measurement of Density and Shape for Single Black Carbon Aerosols in a Heavily Polluted Urban Area

Shurong Wanga, Kaili Zhoua, Xiaohui Lua, Hong Chena, Fan Yangb, Qiang Lic, Xin Yang*a, d, e and Xiaofei Wang*a, d

a. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
b. Environmental Monitoring Station of Pudong New District, Shanghai 200135, China
c. Cambustion Ltd., Cambridge CB1 8DH, United Kingdom
d. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
e. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

* Corresponding author:
Xiaofei Wang: Email: xiaofeiwang@fudan.edu.cn Tel: +86-21-31242526
Xin Yang: Email: yangxin@fudan.edu.cn Tel: +86-21-31245272
CONTENTS OF THIS FILE

Text S1-S3
Table S1
Figure S1

Text S1. The calibration for SP2 by Aquadag particle

A single-jet aerosol atomizer was used to produce Aquadag particles, which were then dried by a silica diffusion dryer and pass through the AAC-DMA system. For a group of Aquadag particles selected by AAC at a fixed D_a and DMA at a fixed D_m, the Aquadag particles’ mass (m_p) can be derived by Eq. (1)-(3):

\[B = \frac{Cc(D_m)}{3\pi \mu D_m} \]
\[\tau = \frac{\rho_0 Cc(D_a)D_a^2}{18\mu} \]
\[m_p = \frac{\tau}{B} \]

Then the SP2 was utilized to measure the mass of these AAC-DMA selected Aquadag particles, producing a mass frequency distribution, whose peak location served as m_{BC}. Theoretically, m_{BC} should be equal to m_p for Aquadag particle, while there is a difference (~±5%) between these two values due to the uncertainties of the measurement of D_a, D_m and m_{BC} by using AAC, DMA and SP2. Given that the operating parameters of AAC, DMA and SP2 were consistent between the calibration and sampling process, thus the precision for m_{BC} of particles selected by AAC and DMA was found to be ~±5% during this study. Besides, SP2 was more sensitive to Aquadag aerosol than to other BC types (e.g., fullerene and diesel exhaust), since the Aquadag induces a higher incandescence signal peak (by a factor of ~25 %) than ambient BC with the same mass (Laborde et al., 2012; Wu et al., 2019). Therefore, like many previous studies (Laborde et al., 2013; Liu et al., 2019a; Liu et al., 2019b; Zhao et al., 2019), during the calibration process the broadband incandescent signal was corrected by scaling a factor of 0.75 to avoid overestimation resulting from the Aquadag-based calibration curve. Table S2 shows several groups of calibration data of SP2 by using this method.

Table S2 shows several groups of calibration data of SP2 by using this method.
Text S2. Uncertainty estimation for the measured and derived parameters.

1. The uncertainty for the aerodynamic diameter (D_a).

For balanced flows (when the exhaust flow equals the sheath flow) the relaxation time at the center of the transfer function of the AAC, can be calculated by Eq. (1).

$$
\tau = \frac{2Q_{sh}}{4\pi \omega^2 r^2 L}
$$

(1)

Thus, the uncertainty of ϵ_τ / τ can be calculated as $\sim 10\%$ in Eq. (2), where $\epsilon_{Q_{sh}} = 0.1$ L/ min, $\epsilon_\omega = 5$ rpm, $\epsilon_r = 2$ mm and $\epsilon_T = 5$ μm (Tavakoli and Olfert, 2014).

$$
\left(\frac{\epsilon_\tau}{\tau}\right)^2 = \left(\frac{\epsilon_{Q_{sh}}}{Q_{sh}}\right)^2 + 4\left(\frac{\epsilon_\omega}{\omega}\right)^2 + 4\left(\frac{\epsilon_T}{T}\right)^2
$$

(2)

Meanwhile, the relationship of D_a and τ can be expressed as:

$$
\tau = \frac{\rho_0 c_c (D_a) D_a^2}{18 \mu}
$$

(3)

therefore, the uncertainty for the D_a was found to be 8% according to Eq. (4), where ϵ_μ is calculated using a temperature uncertainty of 4 °C, resulting in $\epsilon_\mu / \mu = 1.2\%$. It is assumed that the uncertainty of slip corrections, $\epsilon_{c.c} / c_c$, is the same for all particle sizes and equals 2.1% (Allen and Raabe, 1985)

$$
\left(\frac{\epsilon_{D_a}}{D_a}\right)^2 = \sqrt{0.5\left(\frac{\epsilon_T}{T}\right)^2} + \sqrt{0.5\left(\frac{\epsilon_\mu}{\mu}\right)^2} + \sqrt{0.5\left(\frac{\epsilon_{c.c}}{c_c}\right)^2}
$$

(4)

(1) The uncertainty for the particle mass (m_p).

According to the definition of the particle relaxation time in Eq. (5), where B is the mobility of particle.

$$
\tau = B m_p
$$

(5)

$$
B = \frac{c_c (D_m)}{3 \pi \mu D_m}
$$

(6)

The uncertainty for B can be derived by Eq. (7), where $\epsilon_{D_m} / D_m = 3\%$(Kinney et al., 1991)

$$
\left(\frac{\epsilon_B}{B}\right)^2 = \left(\frac{\epsilon_{D_m}}{D_m}\right)^2 + \left(\frac{\epsilon_\mu}{\mu}\right)^2 + \left(\frac{\epsilon_{c.c}}{c_c}\right)^2
$$

(7)

Therefore, the uncertainty for particle mass was found to be $\sim 11\%$ via Eq. (8).

$$
\left(\frac{\epsilon_{m_p}}{m_p}\right)^2 = \left(\frac{\epsilon_T}{T}\right)^2 + \left(\frac{\epsilon_B}{B}\right)^2
$$

(8)

2. The uncertainty for the effective density of particle.

The effective density is defined in Eq. (9), thus, the uncertainty in effective density is
14% according to Eq. (10).

\[\rho_{\text{eff}} = \frac{m_p}{\pi D_m^3} \quad (9) \]

\[\left(\frac{\varepsilon_{\rho_{\text{eff}}}}{\rho_{\text{eff}}} \right)^2 = 9 \left(\frac{\varepsilon_{D_m}}{D_m} \right)^2 + \left(\frac{\varepsilon_{m_p}}{m_p} \right)^2 \quad (10) \]

3. The uncertainty of the dynamic shape factor (\(\chi \)).

Given that the relationship between the aerodynamic diameter and volume equivalent diameter is (DeCarlo et al., 2004):

\[D_a = D_{ve} \sqrt{\frac{\rho p c_c(D_{ve})}{\rho_0 c_c(D_a)}} \quad (11) \]

The relationship between the \(D_m \) and \(D_{ve} \) is:

\[\chi = \frac{c_c(D_{ve}) D_m}{c_c(D_m) D_{ve}} \quad (12) \]

Therefore, the dynamic shape factor can be expressed as:

\[\chi = \left(\frac{D_m}{D_a c_c(D_m)} \right)^{2/3} \frac{\rho p^{1/3} c_c(D_{ve})}{\rho_0^{1/3} c_c^{1/3} D_a} \quad (13) \]

Here, like the previous study (Moteki et al., 2010), the accuracy of the BC-dominated particle density (1.8 g cm\(^{-3}\)) were adopted 5% based on a range of reported values (Mullins and Williams, 1987; Park et al., 2004), namely, \(\varepsilon_{\rho_p}/\rho_p \approx 5\% \). The uncertainty for the \(\chi \) can be calculated as 9% via Eq. (14), where \((\varepsilon_{C_c(D_{ve})}/C_c(D_{ve})) = (\varepsilon_{C_c(D_a)}/C_c(D_a)) = (\varepsilon_{C_c(D_m)}/C_c(D_m)) = 2.1\% \) (Allen and Raabe, 1985).

\[\left(\frac{\varepsilon_{\chi}}{\chi} \right)^2 = \frac{4}{9} \left(\frac{\varepsilon_{D_m}}{D_m} \right)^2 + \frac{4}{9} \left(\frac{\varepsilon_{D_a}}{D_a} \right)^2 + \frac{14}{9} \left(\frac{\varepsilon_{c_c}}{c_c} \right)^2 + \frac{1}{9} \left(\frac{\varepsilon_{\rho_p}}{\rho_p} \right)^2 \quad (14) \]

The number of Non-BC particle (\(N_{\text{non-BC}} \)) and BC-containing particle (\(N_{BC-\text{containing}} \)) can be obtained by SP2. BC-containing particle includes BC-dominated particle and BC-mixed particle. The number of BC-dominated particle (\(N_{BC-\text{dominated}} \)) were calculated through module method (Gauss fitting in IGOR Pro software), X axis is the mass of BC (\(M_{BC} \)) in single particle, Y axis is the \(dN/dM_{BC} \) (N means “particle number”), thus \(N_{BC-\text{dominated}} \) is exactly the area of the fitted peak. Finally, the number of BC-mixed particle (\(N_{BC-\text{mixed}} \)) was known according to the relationship, “\(N_{BC-\text{mixed}} = N_{BC-\text{containing}} - N_{BC-\text{dominated}} \)”
Table S1. The sampling periods for particles with three different aerodynamic diameters (200nm, 350nm and 500nm) are respectively showed in (a), (b) and (c).

<table>
<thead>
<tr>
<th>(a)</th>
<th>AAC-SMPS</th>
<th>AAC-DMA-SP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_a=200\text{nm}$</td>
<td>24 Nov 2018 18:30-20:30</td>
<td>9 Sept 2019 00:00-24:00</td>
</tr>
<tr>
<td></td>
<td>25 Nov 2018 10:30-12:30</td>
<td>10 Sept 2019 00:00-24:00</td>
</tr>
<tr>
<td></td>
<td>26 Nov 2018 8:30-10:30</td>
<td>11 Sept 2019 00:00-24:00</td>
</tr>
<tr>
<td></td>
<td>27 Nov 2018 14:30-16:30</td>
<td>12 Sept 2019 00:00-24:00</td>
</tr>
<tr>
<td></td>
<td>28 Nov 2018 12:30-14:30</td>
<td>13 Sept 2019 00:00-24:00</td>
</tr>
<tr>
<td></td>
<td>29 Nov 2018 16:30-18:30</td>
<td>14 Sept 2019 00:00-24:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b)</th>
<th>AAC-SMPS</th>
<th>AAC-DMA-SP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_a=350\text{nm}$</td>
<td>27 Aug 2019 22:00-23:00</td>
<td>27 Aug 2019 22:00-28 Aug 2019 22:00</td>
</tr>
<tr>
<td></td>
<td>28 Aug 2019 12:00-13:00</td>
<td>28 Aug 2019 22:00-29 Aug 2019 22:00</td>
</tr>
<tr>
<td></td>
<td>29 Aug 2019 17:00-18:00</td>
<td>29 Aug 2019 22:00-30 Aug 2019 22:00</td>
</tr>
<tr>
<td></td>
<td>30 Aug 2019 16:30-17:30</td>
<td>30 Aug 2019 22:00-31 Aug 2019 22:00</td>
</tr>
<tr>
<td></td>
<td>31 Aug 2019 19:30-20:30</td>
<td>31 Aug 2019 22:00-1 Sept 2019 22:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c)</th>
<th>AAC-SMPS</th>
<th>AAC-DMA-SP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_a=500\text{nm}$</td>
<td>22 Aug 2019 20:00-22:00</td>
<td>22 Aug 2019 22:00-23 Aug 2019 22:00</td>
</tr>
<tr>
<td></td>
<td>23 Aug 2019 14:00-16:00</td>
<td>23 Aug 2019 22:00-24 Aug 2019 22:00</td>
</tr>
<tr>
<td></td>
<td>24 Aug 2019 8:00-10:00</td>
<td>24 Aug 2019 22:00-25 Aug 2019 22:00</td>
</tr>
<tr>
<td></td>
<td>26 Aug 2019 20:00-22:00</td>
<td>26 Aug 2019 22:00-27 Aug 2019 22:00</td>
</tr>
</tbody>
</table>

Table S2. Calibration data of SP2 by using AAC-DMA tandem system to quantify the mass of BC standard particle.

<table>
<thead>
<tr>
<th>Group</th>
<th>D_a(nm)</th>
<th>D_m(nm)</th>
<th>m_{BC}(fg)</th>
<th>D_{ve}(nm)</th>
<th>Shape Factor (χ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>91</td>
<td>0.29</td>
<td>67</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>118</td>
<td>0.69</td>
<td>90</td>
<td>1.6</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>141</td>
<td>1.18</td>
<td>108</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>140</td>
<td>175</td>
<td>2.05</td>
<td>130</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>202</td>
<td>3.07</td>
<td>148</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>241</td>
<td>5.53</td>
<td>180</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
<td>300</td>
<td>10.57</td>
<td>224</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>350</td>
<td>445</td>
<td>30.71</td>
<td>319</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>450</td>
<td>496</td>
<td>53.92</td>
<td>385</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>594</td>
<td>80.81</td>
<td>441</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Figure S1. BC mass distribution of single particle in (a) Mode ($D_a=350\ \text{nm}, D_m=260\ \text{nm}$) and (b) Mode ($D_a=500\ \text{nm}, D_m=359\ \text{nm}$), the insert panel shows the daily average BC mass distribution.
Reference

Tavakoli, F., Olfert, J.S. (2014). Determination of particle mass, effective density, mass–mobility exponent, and dynamic shape factor using an aerodynamic aerosol
