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ABSTRACT 

 
We test three methods for ozone prediction in the El Paso (ELP) and Houston-Galveston-Brazoria 

(HGB) regions of Texas from 2005–2019: (1) a Generalized Additive Model (GAMs) approach; (2) a 
GAM approach with the addition of the Synthetic Minority Over-sampling TEchnique (SMOTE) and 
(3) a tail dependence modeling approach based in extreme value theory (EVT). We also compare 
the feature selection capabilities of the tail dependence approach to other feature selection 
methods. We find that the GAM+SMOTE model outperformed the GAM-only model when predicting 
ozone values for the root mean square error metric, particularly with regard to the above-threshold 
ozone values, which may be of particularly useful for extreme ozone event prediction. In addition, 
we find that the improvement of above-threshold MDA8 O3 prediction for the GAM+SMOTE 
method tends to come at the cost of below-threshold prediction, which is particularly important 
if MDA8 O3 trends are of interest. We also find that the tail dependence approach is capable of 
predicting extreme ozone events, but algorithmic stability and configuration complexity can make 
this approach difficult to operationalize on a broad scale and that the selection of the threshold 
needs to be carefully considered. Finally, the feature selection via the tail dependence method 
performs comparably to other forms of machine learning-based feature selection and we find 
that there are multiple parameter sets that can predict MDA8 O3 with equal success. 
 
Keywords: GAM, SMOTE, Tail dependence, Ozone prediction, Feature selection 
 

1 INTRODUCTION 
 

Surface ozone concentrations and their related detrimental health effects (Brunekreef et al., 
2002) have been decreasing throughout the United States (U.S.) (Cooper et al., 2012; Fleming et 
al., 2018) due primarily to the reduction of ozone precursors including nitrogen oxides (NOx = NO 
+ NO2) and carbon monoxide (CO) (Granier et al., 2011). These decreasing ozone trends are 
especially evident in remote or rural regions, while weaker or negligible ozone trends are seen in 
many urban regions and in the western U.S. due to decreasing emissions of ozone precursors and 
the growing relative importance of the transport of ozone precursors from Asian countries 
(Brown-Steiner et al., 2011; Langford et al., 2017; Fleming et al., 2018). While local reductions in 
ozone precursor emissions are the primary means of reducing local ozone concentrations (Cooper 
et al., 2012), there are many non-local and thus uncontrollable chemical and meteorological factors 
that can increase ozone concentrations including upwind sources of ozone precursors such as 
biomass burning, lightning NOx emissions, or stratospheric ozone intrusions (Jaffe et al., 2018). 

Tropospheric ozone chemistry is notorious for its non-linear dependence on concentrations of 
NOx and volatile organic compounds (VOCs) (Lin et al., 1988), which makes controlling high ozone 
events a challenge. The Environmental Protection Agency (EPA) has prioritized reductions in high  
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ozone events, and thus has established a framework for the classification of specific extreme ozone 
events as “exceptional events” that may be exempted from a state’s requirement to meet National 
Ambient Air Quality Standards (NAAQS) (Jaffe et al., 2018; U.S. EPA, 2016a, b). Subsequently, there 
exists a large body of scientific research focused on characterizing, quantifying, and determining 
the causes of extreme ozone events (Fleming et al., 2018; Brown-Steiner et al., 2018; Moghani 
et al., 2018). 

Due to the high computational cost and complexity of three-dimensional tropospheric chemistry 
simulations using chemical tracer models (CTMs), statistical models of ozone and tropospheric 
chemistry are frequently used to estimate ozone concentrations and trends. These models include 
traditional statistical techniques such as linear regression models (Shen and Mickley, 2017), land 
use regression models (Wang et al., 2020), as well as machine learning techniques (Watson et al., 
2019). Non-Gaussian statistical representations of ozone distributions have also been successfully 
used to characterize and understand ozone chemistry including extremal dependence (Phalitnonkiat 
et al., 2018), generalized extreme value techniques (Quintela-del-Ri’o and Francisco-Fernández, 
2011), the generalized Pareto distribution (Rieder et al., 2013), and tail dependence methods 

(Russell et al., 2016). In addition, generalized additive models (GAMs), which have the capability 
of representing non-linear relationships between predictand variables and a target predictor variable, 
have been used to model ozone concentrations (Watson et al., 2019; Davis and Speckman, 1999). 

GAMs are a form of linear modeling which allows non-linear functions of individual predictors 
within a regression framework (Wood, 2017) and are increasingly being used within the atmospheric 
sciences (Alvarado et al., 2017; Gong et al., 2017). This is similar to standard linear regression 
techniques, which optimize scalar coefficients (αk) for each predictor (xk) for k = 1, ..., p: 
 

0 1 1 2 2ˆ ... p py x x xα α α α= + + + +  (1) 
 
except that the coefficients are replaced with functions that can take on a variety of linear and 
non-linear smooth functions: 
 

( ) ( ) ( )0 1 1 2 2ˆ ... p py s s x s x s x= + + + +  (2) 
 

The GAM approach optimizes these smooth functions and allows for predictor-by-predictor 
variation in the number of degrees of freedom, which can be used to gain additional understanding 
of the relationship between the predictors and the predictand. 

Oversampling and undersampling techniques are widely utilized to balance datasets that have 
an unequal number of samples above and below a given threshold, especially when the variable 
of interest is disproportionately represented within either the above- or below-threshold dataset. 
While these techniques artificially redistribute data distributions, they have been shown to 
enhance the ability to statistically predict sparsely represented extreme events such as the rapid 
intensification of tropical cyclones (Yang et al., 2020) and large wildfires (Pérez-Porras et al., 2021). 
This is particularly useful when the extreme events are of regulatory importance, such as extreme 
ozone events, where available observations of the event of interest are sparse. Typically, these 
techniques divide the dataset into an above-threshold and a below-threshold dataset and then add 
or remove datapoints until there are roughly an equal number of above- and below-threshold 
data points. The disadvantage of over-sampling, especially for datasets with a small number of 
observations, is that the resulting dataset does not fill in the full distribution of the target population, 
but rather uses the existing under-sampled data as representative. This could potentially skew 
the resultant analysis as the artificial over-sampling makes no assumptions about the underlying 
population or the sampling procedure.  

An alternative, and the method used in this project, is the Synthetic Minority Oversampling 
TEchnique (SMOTE) (Chawla et al., 2002). For values under the specified threshold, the SMOTE 
algorithm randomly removes datapoints. For values above the specified threshold, the SMOTE 
algorithm inserts additional datapoints at interpolated positions between the existing datapoints. 
This method has advantages over other oversampling techniques as the points added by the 
SMOTE algorithm better approximate new datapoints which are essentially “drawn” from the same 
underlying distribution, and thus is more representative, of the population of datapoints being 
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sampled (Chawla et al., 2002). While SMOTE does produce a synthetic dataset, the redistribution 
of the ozone data to over-emphasize the extreme ozone events, and the increase in predictive 
capability this redistribution produces, is worth the artificiality of the final synthetic dataset. 

The tail dependence approach was developed by Russell et al. (2016) to “explore which 
combinations of meteorological conditions are associated with extreme ground level ozone 
conditions.” This method is built within the framework provided by extreme value theory (EVT), 
and therefore has the advantage of being theoretically justified. Russell et al. (2016) use their 
method to attempt to identify the linear combination of meteorological covariates that achieved 
the highest degree of asymptotic dependence with the ozone response. Informally, two variables 
are termed asymptotically dependent if the probability that they are at extreme levels 
simultaneously is non-zero. The predictand, ozone, is treated as the response, while the set of n 
meteorological variables are treated as the covariates.  

As is often done in multivariate extremes, the method of Russell et al. (2016) incorporates 
marginal transformations in order to identify the optimal set of regression parameters (details 
can be found in Russell et al. (2016)). The resulting optimization equation is similar to that used 
in linear regression (Eq. (1)) with one primary difference: the model optimization is performed in 
this transformed parameter space. Working in this transformed space has numerous computation 
and theoretical advantages; however, some information is lost as a result. For this reason, the 
optimized beta parameters should not be used directly for prediction without accounting for this 
potential loss of information.  

This work applies these three statistical approaches to surface ozone and meteorological data 
within Texas and has two motivating science questions: 
(1) Can a combination of GAM and SMOTE modeling improve the prediction of extreme ozone 

events compared to GAM-only techniques? 
(2) Can the feature selection method developed by Russel et al. (2016) be used in combination 

with GAM+SMOTE to further improve the prediction of extreme ozone events? 
In this work we present an analysis of 15 years (2005–2019) of surface ozone data from the El 

Paso (ELP) and Houston-Galveston-Brazoria (HGB) regions of Texas with a focus on fitting a GAM 
to the extreme ozone data using: (1) a standard GAM approach; (2) a GAM approach coupled with 
a SMOTE algorithm; and (3) a tail dependence approach developed initially by Russell et al. 
(2016). In the next section (Section 2) we detail the datasets used and the methods. In Section 3 
we show our results, while in Section 4 we draw conclusions.  
 

2 METHODS 
 
2.1 Texas Ozone and Meteorological Data 

The raw ozone and meteorological data used in this work comes from Texas Commission on 
Environmental Quality (TCEQ) surface station observations located within El Paso (ELP) and the 
Houston-Galveston-Brazoria (HBG) regions from January 1, 2005 to December 31, 2019. The raw 
data includes hourly observations of ozone and twelve meteorological variables. We use the 12 raw 
meteorological variables to derive 36 meteorological variables temporally aggregated at daily, 
morning, or afternoon levels. However, not all meteorological variables are available at all sites, 
so in this study for site-by-site prediction we use all derived meteorological variables which ranged 
from 20 to 35, while for aggregated area-level prediction, we use only 20 derived meteorological 
variables used in this study that are available at all sites. The maximum daily 8-hour ozone (MDA8 O3) 
was calculated, and due to the persistence of surface-level ozone, we also included the previous 
day’s MDA8 O3 within the final predictor data set. Supplemental Table S1 summarizes these 
12 hourly meteorological variables and the 36 derived variables. We additionally filtered the ELP 
and HGB data to include only sites that had observations that spanned the full 15 year time frame 
(2005–2019). This included all 6 sites for the ELP region and only 18 of the 58 sites for the HGB 
region. We further selected the 6 sites in the HGB region with the most complete temporal coverage, 
so that the final datasets used in this analysis include 6 sites from the ELP region and 6 sites from 
HGB region. Individual sites were labelled by concatenating their state, county, and site codes, 
while the parameter codes for the meteorological variables are copied from the raw datasets. For all 
data processing and prediction procedures in the following sections, timesteps with missing values 
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were dropped from the predictor data set. Finally, we subdivided the following analysis into annual 
data (January–December) and the ozone season (May–October). 
 
2.2 GAM-Only Ozone Prediction 

We applied a standard GAM approach for a baseline assessment of ozone prediction, using 
meteorological variables constant among sites, as well as the previous day’s MDA8 O3 value. 
Gong et al. (2017) successfully applied GAM to Houston and other cities using meteorological 
parameters at both the surface level and at 500 mb, as well as information derived from Hysplit 
back trajectory simulations. In this work, we include meteorological parameters form surface 
stations only. Here we describe an overview of our GAM formulation, while additional information 
and sensitivity tests are described in the Supplemental Information. For the simple ozone 
prediction with the GAM model, we began by including all 20 common meteorological features 
among the 6 sites in both ELP and HGB, plus the previous day’s ozone, such that the GAM 
optimization function has the form: 

 
E(MDA8 O3) = f0(Previous_MDA8) + f1(max_ws) + f2(avg_ws) + f3(morning_ws) + 
f4(afternoon_ws) + f5(max_pwg) + f6(avg_pwg) + f7(max_sdwd) + f8(avg_sdwd) + f9(daily_max_T) 
+ f10(daily_min_T) + f11(diurnal_T) + f12(daily_mean_T) + f13(morning_mean_T) + 
f14(afternoon_mean_T) + f15(avg_wind_u) + f16(avg_wind_v) + f17(morning_wind_u) + 
f18(morning_wind_v) + f19(afternoon_wind_u) + f20(afternoon_wind_v) (3) 
 
where E(MDA8 O3) represents the predictand (yt) for which we are fitting the GAM model. The 
GAM model for each region includes the six sites within each region with the most complete 
temporal coverage. We also conduct GAM runs for the six individual sites both for the ozone 
season (May–October) and the entire year (January–December). Note that we also include the 
previous day’s ozone within the predictor variables, which is a common practice when using 
available observations for ozone prediction (see Oufdou et al. (2021) and references therein), as 
ozone has high day-to-day persistence. If we exclude the previous day’s ozone, the performance 
of these models drops by roughly half (data not shown). We did not include any predictor 
variables with a temporal trend (such as NOx emissions) as the MDA8 O3 exhibited little trend 
over this period (for ELP, MDA8 O3 was 44.8 ppb averaged over 2005–2007 and 45.4 ppb averaged 
over 2017–2019; for HGB, MDA8 O3 did decrease from 40.7 ppb to 36.9 ppb over the same 
averaging periods, which we did not feel was a strong enough trend to make any adjustments. 
Plots of the full time series for ELP and HGB, along with plots of residuals, can be seen in the 
Supplemental Figs. S3, S4, and S5. The gam function in R (via the mgcv package (Wood, 2019)) 
was used for this project and details of the parameter selection and sensitivity testing can be 
found in the Supplemental Information. We randomly distributed the data for all time periods 
into either the training (70%) or testing (30%) datasets, both for the annual (January–December) 
and O3 season (May–October) datasets. 
 
2.3 GAM+SMOTE Ozone Prediction 

The combination of GAM regression and SMOTE dataset redistribution takes the dataset from 
the GAM-only modeling and selects a threshold value to separate the above- and below-threshold 
MDA8 O3 data samples. The SMOTE algorithm is then applied to the training and testing data 
such that there is a roughly equal number of above- and below-threshold datasets. The example 
in Fig. 1 applies the SMOTE algorithm with a 60 ppb threshold to a two-dimensional (ozone and 
temperature) dataset, but SMOTE can be similarly applied to higher dimensional datasets, such as 
the multidimensional meteorological dataset in this work. The oversampling of the underrepresented 
event (here, extreme ozone events) occurs by linearly interpolating new points between existing 
points within the higher dimensional data distribution. Table 1 compares the absolute (70 ppb) 
theshold to relative (90th percentile) thresholds for our data. The selection of a threshold of 
70 ppb, which matches the ozone National Ambient Air Quality Standard (NAAQS) and thus is a 
natural choice for a threshold for all sites, results in a very skewed distribution of data with few 
above-threshold samples. Meanwhile, a 90th percentile threshold, which may result in a less skewed 
distribution for each site, can result in difficulties when comparing sites across regions. Further  
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Fig. 1. A comparison of the original (left) and post-SMOTE (right) ozone season (May–October, 2005–2019) MDA8 O3 distribution 
versus daily maximum temperature for the ELP region. Red points are in excess of a 60 ppb threshold. 

 
Table 1. A comparison of the above- and below-threshold distribution of MDA8 O3 values for the ozone season (May–October) 
for both the ELP and HGB regions using an absolute (70 ppb) and relative (90th percentile) threshold selection for both the GAM-
Only and GAM+SMOTE approaches. Data are divided into 70% training and 30% testing datasets. 

 
 

 
Original SMOTE 

Training Testing Training Testing 
ELP All Sites 70 ppb Below 10,381 4,492 1,071 121 

 Above 357 110 1,071 121 
90th percentile Below 9,662 4,144 3,228 495 
 Above 1,076 458 3,228 503 

HGB All Sites 70 ppb Below 9,371 4,031 1,644 242 
 Above 548 221 1,644 243 
90th percentile Below 8,901 3,852 3,054 440 
 Above 1,018 400 3,054 440 

 
sensitivity tests can be found in the Supplemental Information. For the rest of this work we 
selected the 90th percentile threshold for each site and each region. Finally, a standard GAM 
regression is trained using the post-SMOTE datasets. Details on specific parameter selection and 
sensitivity tests can be found in the Supplemental Information. 
 
2.4 Tail Dependence 

The tail dependence procedure employed in this work seeks to find the linear combination of 
covariates that have the highest possible degree of asymptotic dependence with the ozone 
response (see Russell et al., 2016; Fix et al., 2018). Methods based in extreme value theory (EVT), 
such as this one, are critical to consider as they offer theoretically justified approaches for modeling 
the far upper tail. As the objective of Russell et al. (2016) was to identify the meteorological 
conditions that were associated with extreme ozone conditions, and not ozone prediction directly, 
Russell et al. (2016) did not consider methods for direct ozone prediction. As is commonplace in 
multivariate EVT, marginal transformations are made (see Russell et al., 2016 for details). The 
transformation employed here is a lossy transformation. As such, we were unable to make direct 
ozone predictions without a loss of information. However, if we use the regression parameter 
estimates to make ozone predictions, understanding that there is some loss of information 
inherent in the procedure, ozone prediction is possible.  
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We divide this task into two parts. First, we use the Russell et al. (2016) procedure to estimate 
the regressions parameters that best fit the TCEQ-supplied metrological covariates to the highest 
MDA8 O3 values and use these parameter estimates as a feature selection procedure (see 
Supplemental Table S2). We then use in the GAM+SMOTE analysis to evaluate the selected 
covariates prediction performance. Second, we attempt to replace the lossy rank transformation 
with a lossless transformation in order to made ozone predictions directly.  

In order to assess a model’s performance and as a means of protecting against overfitting, 
Russell et al. (2016) suggest a 10-fold cross-validation (CV) procedure. CV is a commonly utilized 
non-parametric procedure for assessing a model’s out of sample predictive ability. Data are first 
randomly divided into 10 (approximately) equally sized partitions. At each step, exactly one 
partition is held out, and the model is fit on the remaining nine. The resulting parameter estimates 
are used to predict the values of the observations in the held-out partition, and the sum of the 
squared errors (SSE) is calculated for each of these observations. This is repeated for each 
partition, and the CV score is the average of the 10 resulting SSEs. When comparing two models, 
a higher CV score corresponds with a worse ability to model MDA8 O3 for new data; therefore, a 
smaller CV score is preferred.  

For analysis based on this approach, we utilize all available covariates and focus on the ozone 
season (May–October) for all years (2005–2019) available from the six selected sites in the ELP 
and HGB regions. As the tail dependence procedure consists of several steps and contains a 
number of decisions that could potentially impact the final results, we perform a series of 
sensitivity tests which we summarize in the Supplemental Information. Additionally, in the 
Supplemental Information, we compare predictions using the lossy rank transformation to a less 
lossy transformation procedure, and also compare these prediction results to the previous 
GAM+SMOTE process.  

 
2.5 Metrics for Comparison 

We use the R-squared value (R2) and the root mean square error (RMSE) to compare the different 
time series of observations and model predictions. Two RMSE metrics are included in the following 
tables and analysis: one that used all available ozone data (RMSE_All) and one that only used the 
above threshold data above 60 ppb (RMSE_Highest). In addition, we primarily use a single summary 
statistic: the True Positive Rate (TPR). See Supplemental Table S1 for sensitivity tests on the 80th 
or 90th percentile selection for the TPR metric. The TPR quantifies the actual number of positive 
datapoints successfully predicted by the algorithm based on the true positives (TPs) and the false 
negatives (FNs), and is defined as: TPR = TP/(TP + FN) expressed as a percentage.  
 

3 RESULTS AND DISCUSSION 
 
3.1 GAM-Only and GAM+SMOTE Ozone Prediction Results 

Fig. 2 plots the GAM-only and GAM+SMOTE predictions of MDA8 O3 using the 20 meteorological 
covariates compared to the observed values in the testing datasets. For GAM-only, the regression 
model fit will be dominated by lower MDA8 O3 values which results in significant biases when 
predicting at the higher MDA8 O3 levels (Fig. 2). In both regions, the highest MDA8 O3 values are 
systematically underpredicted by the GAM regression (indicated by digression from the one-to-
one line (red)), while the lower and mid-range MDA8 O3 values are generally well-predicted. R2 
and RMSE statistics are shown in Table 2. 

In contrast, the highest MDA8 O3 values are less underpredicted with the GAM+SMOTE model 
compared with GAM-only model. A summary of evaluation metric results for a GAM-only and 
GAM+SMOTE comparison for the six sites analyzed in both the ELP and HGB regions are in Table 2. 
Overall, compared to the GAM-only model the GAM+SMOTE model: (1) did not substantially 
change the R2 values; (2) had varying impacts on the RMSE when all test samples are included 
(RMSE_All); and (3) consistently reduced the RMSE for above-threshold testing samples 
(RMSE_Highest) at the expense of the lowest ozone values. From this we conclude that the SMOTE 
procedure improves the ability of the GAM-only regression to predict the above-threshold ozone 
values, but this improvement comes at the expense of the below-threshold values. We find that 
the GAM+SMOTE method consistently outperforms the GAM-only method when looking at the  
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Fig. 2. Predicted versus observed MDA8 O3 values for ELP (top) and HGB (bottom) regions using the GAM-Only (left) and 
GAM+SMOTE (right) approaches. The dotted red line is the 1:1 line. 

 
RMSE values, but not the R2 values. In addition, the GAM-only method has lower RMSE_all values 
than RMSE_highest values, and the GAM+SMOTE method improves both RMSE scores with the 
largest improvements made for the RMSE_highest scores. Finally, both models perform better 
using the R2 metric over the HGB region than the ELP region, while the RMSE metric outperforms 
the R2 metric over the ELP region compared to the HGB region. This is likely due to different 
chemical and meteorological conditions within each region. 

In Fig. 3 we plot the observed MDA8 O3 values within the ELP training datasets (black) compared 
to the GAM-only (blue) and GAM+SMOTE (red) regressions for above-threshold events. The 
GAM-only predictions consistently underpredicts the observed MDA8 O3 values, while the 
GAM+SMOTE more consistently predicts MDA8 O3 values. However, neither the GAM-only or the 
GAM+SMOTE regressions are capable of correctly predicting the highest MDA8 O3 values. This is 
likely because the highest MDA8 O3 values are the result of complex, non-liner meteorological 
and chemical conditions, which statistical models have trouble predicting. 
 
3.2 Feature Selection Results 

We test different parameter sets via different feature selection approaches as indicated in  
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Table 2. Summary table for the ELP and HGB sites (each individual site and the regional average) comparing GAM-Only and 
GAM+SMOTE R2 and RMSE metrics. NOTE: RMSE_All includes all data points, while RMSE_Highest includes only those above the 
90th percentile. 

Area Site 
GAM-Only GAM+SMOTE 

R2 RMSE_All RMSE_Highest R2 RMSE_All RMSE_Highest 
El Paso 481410029 0.69 8.61 10.63 0.62 8.34 8.4 

481410037 0.73 8.1 9.02 0.67 8.2 7.66 
481410044 0.67 9.79 11.35 0.44 11.5 9.11 
481410055 0.72 8.75 13.48 0.60 9.17 8.27 
481410057 0.65 8.39 11.25 0.63 7.82 8.94 
481410058 0.72 8.66 10.23 0.66 7.47 9.02 
All sites 0.60 6.95 10.76 0.57 8.17 7.52 

Houston 480390618 0.79 10.67 11.94 0.78 10.3 10.51 
480391004 0.80 12.66 15.11 0.81 11.1 12.33 
480391016 0.81 9.8 11.72 0.81 9.11 9.59 
480390056 0.74 12 13.8 0.76 10.52 12.7 
480390024 0.83 9.4 10.68 0.81 8.95 9.01 
480390026 0.77 10.8 11.8 0.73 11.7 10.7 
All sites 0.73 8.93 11.82 0.70 10.37 10.08 

 

 
Fig. 3. Ozone season time series for the ELP region for observed (black), GAM-Only (blue), and GAM+SMOTE (red) approaches. 
GAM-Only and GAM+SMOTE plots compared to observations are also plotted to better see the distribution of points in 
comparison to the observed values. 

 
Supplemental Table S2 including: (1) the lowest cross-validation (CV) scores, a backward selection 
method using the random forest increase in mean squared error (%IncMSE) metric, a completely 
random selection of features (7 for ELP and 6 for HGB), and a random selection of meteorological 
features selected within each raw meteorological sub-group. The full list of selected parameters 
can be found in Supplemental Table S1 and a complete description of the different feature 
selection approaches can be found in Supplemental Table S2. We tested the feature selection 
approaches for both the ELP and HGB regions using both an individual and the regional average. 
Supplemental Table S7 elucidates many of the differences between the regions, models, and 
feature selection methods. First, all the feature selection methods outperform (via higher R2 and 
lower RMSE values) the fully random selection of features. Second, among the other feature 
selection methods, there is no individual method that clearly outperforms any of the others.  

From these differences we find that, while feature selection methods outperform random 
feature selection, none of the methods tested here outperform the others, which indicates that 
there are many sets of predictand variables that perform equally well. In most cases, other than 
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the previous day’s ozone, some derived version of wind speed, temperature, and relative 
humidity were used in the highest performing models. Also, it is likely that many of the observed 
meteorological variables are highly correlated, so including multiple variables derived from the 
same raw observations does not provide any additional performance in the model results. Thus, 
while it seems like there is no clear way of identifying a single best-performing combination of 
features, feature selection procedures are capable of identifying a set of top-performing but 
functionally equivalent models. Finally, additional variables, such as model output or observations 
at different altitudes, such as the variables used in the GAM modeling of Gong et al. (2017) is 
likely to improve the modeling results compared to the surface station data included in this study. 

 
3.3 Tail Dependence Ozone Prediction Results 

We found that using the tail dependence optimized beta parameters to make ozone predictions 
using the top-performing set of parameters (Supplemental Table S7) resulted in successful 
prediction of MDA8 O3 time series for the ELP region (Fig. 4). Supplemental Table S7 compares 
the top performing tail dependence feature selection sets (using the CV metric) to alternative feature 
selection approaches. Compared to the GAM+SMOTE approach (Table 2), the tail dependence 
approach produced comparable summary metrics. For the full year, the tail dependence has an 
R2 value of 0.54 with a RMSE_All value of 8.41 ppb and a RMSE_Highest value of 11.02. This is 
comparable to the GAM+SMOTE performance via the R2 metric (R2 = 0.62, Table 2), comparable 
for the RMSE_All metric (8.34 ppb, Table 2), and moderately worse than for the RMSE_Highest 
metric (8.40 ppb, Table 2). However, the tail prediction results can vary from site to site. For 
instance, Supplemental Fig. S2 plots the tail dependence prediction results for a site within the 
HGB region, which shows less predictive success than the example site for the ELP region (Fig. 4), 
likely due to data loss during the rank transformation procedure. This further highlights challenges 
associated with the trail dependence approach. 

 

4 CONCLUSIONS 
 

In this project we have shown that statistical approaches for ozone prediction can successfully 
forecast ozone time series, although the predictive capabilities can vary by site and season. In 
particular, the combination of GAM and SMOTE techniques together can be used to predict 
extreme ozone events, although this success comes at the expense of the non-extreme ozone 
prediction capabilities. Thus, for air quality applications in which exceedances of NAAQS are of 
primary importance, the GAM+SMOTE approach can be straightforwardly utilized to make 
extreme ozone predictions based on meteorological and previous-day ozone observations. In 
these cases, the artificial redistribution of the datasets used for prediction can be determined to 
be worthwhile if the result is an improved predicative capability for the extreme event in 
question, as we have shown here for extreme ozone events. In addition, more technical statistical 
approaches, such as the tail dependence approach of Russell et al. (2016), can also be utilized or 
employed to make ozone predictions. However, more care is required in the initialization, tuning, 
and optimization on a per-site or per-region basis to ensure algorithmic stability. In this work we 
found that the tail dependence method performed comparably to the GAM+SMOTE method, and 
thus we could not recommend the use of the tail dependence method for similar ozone extreme 
event prediction. Nonetheless, once a tuned and optimized tail dependence approach has been 
initialized for a given region or site, it may be used operationally without much need for further 
tuning or optimization, and future work may find cases in which the tail dependence method 
outperforms other statistical approaches. 

We have also demonstrated that feature selection for ozone prediction is a consistent challenge 
with no clear optimum. The number of meteorological features that might be included in a 
statistical prediction approach, along with the differing forms or normalization and algorithmic 
parameter selection, are large. We have shown that feature selection using the tail dependence 
approach performs equally as well as other machine learning (ML)-based and expertise-based 
feature selection approaches, and that all of these approaches outperform a randomized feature 
selection approach. Additionally, we have shown that ozone prediction capabilities are greatly 
enhanced with the inclusion of the previous day’s ozone concentration, which highlights the  
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Fig. 4. Predicted versus Observed plots for one ELP site for the ozone season and the full annual cycle (top row) along with the 
full observed (black) and predicted (red) times series for the ozone season (middle row) and full annual time period (bottom) 
for the tail-dependence prediction. A plot for a site within the HGB region can be found in the Supplemental Information 
(Supplemental Fig. S2). 
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regional and persistent nature of ozone concentrations at the surface. Model performance without 
the inclusion of the previous day’s ozone decreases the performance by roughly half. Meteorology-
only prediction of ozone is unlikely to enable high-performing ozone prediction even with a large 
number of selected features. This also highlights the need for chemical tracer models which are 
capable of directly simulating the non-linear complex chemistry that ultimately controls extreme 
ozone events, especially when project objectives include predicting and understanding the highest 
ozone events. Based on our results, it seems unlikely that statistical or even ML-based approaches 
to ozone prediction will be capable of predicting these extreme events as well as chemical tracer 
modeling efforts, especially if there are trends in the chemical, meteorological, and climatological 
conditions over time, as ML-based approaches have trouble predicting out-of-sample cases 
under these changing conditions resulting from these trends. 

Big datasets like the TCEQ-supplied datasets utilized in this report have a large number of 
observed variables, and any statistical modeling approach using large datasets needs to have a 
feature selection process in order to remain computationally manageable. In these cases, concerns 
regarding model overfitting and variable independence need to be considered. In addition, there 
are non-meteorological variables that can have significant impacts on MDA8 O3 such as local 
sources of emission of ozone -precursor gases and large-scale transportation of ozone and ozone 
-precursors, none of which are included in this analysis.  

We recommend that future work includes an expanded feature selection process and the 
addition of additional non-meteorological datasets. We found significant site-to-site and region-
to-region variability in the magnitude of high-ozone events, such that a selection of an absolute 
threshold for determine high- and low-ozone events is not practical. Additionally, other statistical 
performance metrics beyond R2 values and RSME used in this work could further quantify site-
to-site and regional-scale performance. We recommend future work to characterize the site-to-
site and region-to-region variability of both ozone and meteorology, as this would better enable 
air quality managers to understand and characterize the air quality as a heterogeneous and highly 
variable system. 
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