Siwatt Pongpiachan This email address is being protected from spambots. You need JavaScript enabled to view it.1, Nichada Jearanaikoon2, Kanjana Thumanu2, Jureerat Pradubsri2, Ratchadaporn Supruangnet2, Chaisri Tharasawatpipat3, Muhammad Zaffar Hashmi4, Ronbanchob Apiratikul3

1 NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), Bangkok 10240, Thailand
2 Synchrotron Light Research Institute (Public Organisation), Nakhon Ratjasima 30000, Thailand
3 Department of Environmental Science, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand
4 Department of Chemistry, COMSATS University Islamabad, Islamabad 45550, Pakistan

Received: February 6, 2021
Revised: July 8, 2021
Accepted: July 12, 2021

 Copyright The Author's institutions. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited. 

Download Citation: ||  

  • Download: PDF

Cite this article:

Pongpiachan, S., Jearanaikoon, N., Thumanu, K., Pradubsri, J., Supruangnet, R., Tharasawatpipat, C., Hashmi, M.Z., Apiratikul, R. (2021). Using Synchrotron Radiation X-ray Fluorescence (SRXRF) to Assess the Impacts of Shipping Emissions on the Variations of PM10-bound Elemental Species. Aerosol Air Qual. Res.


  • Transition metal mono-substituted heteropoly compounds were prepared to remove H2
  • H7PMo11CoO39 had the remarkable desulfurization and regeneration capabilities.
  • Optimal conditions for desulfurization were obtained.
  • The desulfurization products were confirmed to be S and SO42–.


Shipping activities significantly contribute to global atmospheric pollutant emissions. Numerous studies have used synchrotron X-ray fluorescence spectroscopy (SRXRF) to identify elemental species in atmospheric particles, yet few studies have applied this technique for assessing PM10-bound chemical species from shipping emissions. In this study, we conducted simultaneous sampling of PM10 at three air quality observation sites located close to Laem Chabang Sea Port (LCSP) from 24 May to 27 June 2020. The PM10 samples were then chemically characterised using SRXRF at the Beam Line 5.1 Wiggler (BL5.1W) in the Siam Photon Source, Synchrotron Light Research Institute (Nakhon Ratchasima, Thailand). We identified unique features in the SRXRF spectra of PM10 samples collected from the site adjacent to LCSP. The average percentage contributions of selected metals at LCSP occurred in the order of Fe > Cu > Te > As > Br > Kr > Mn > Cr > Ni > V > Ti > P > Se > S > Cl, which is in good agreement with the results of previous studies conducted in Bangkok. Although some previous studies highlight the importance of V/Fe as the diagnostic binary ratio that can be used as a chemical proxy for categorizing shipping related particles, this application can be problematic-particularly in the atmospheric environment with high contents of iron-rich dust aerosols. In stead of employing V/Fe, the diagnostic binary ratios of As/V and Se/V can be considered as alternative geochemical tracers for classifying shipping emissions associated aerosols. By applying the concept of enrichment factor (EF), Se is exceedingly enriched in all observatory sites indicating that industrial emissions were the dominant contributor of Se at the ambient air of Lam Chabang. Hierarchical cluster analysis (HCA) successfully classify a group of V, Ti, Ga, and Ni at all sampling sites, which may be caused by shipping activities coupled with industrial emissions.

Keywords: μ-SRXRF spectra, PM10, Rare elements, Heavy metals, Shipping emissions

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.