Chenxi Zhang This email address is being protected from spambots. You need JavaScript enabled to view it.1,2, Xuesong Cao2, Xiaomin Sun2, Hengjun Peng This email address is being protected from spambots. You need JavaScript enabled to view it.3 

1 College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
2 Environment Research Institute, Shandong University, Qingdao 266200, China
3 Logistics support department, Shandong University, Jinan 250100, China


Received: November 19, 2020
Revised: February 18, 2021
Accepted: March 2, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.200637  


Cite this article:

Zhang, C., Cao, X., Sun, X., Peng, H. (2021). Study on the Formation of Secondary Organic Aerosol by Ozonolysis of Citral in the Atmosphere. Aerosol Air Qual. Res. 21, 200637. https://doi.org/10.4209/aaqr.200637


HIGHLIGHTS

  • The k of H2O and SO2 with CIs are close to the reported experimental value.
  • CIs can react with SO2 to generate a carbonyl compound and SO3.
  • Ozonolysis of Citral can produce low volatile organic compounds, which can form SOA.
 

ABSTRACT


A major research area in atmospheric chemistry focuses on the formation of secondary organic aerosol (SOA), which contains a large variety of low-volatility organic compounds when generated by the ozonolysis of monoterpenes. Thus, we apply quantum chemistry and kinetic calculations to investigate the ozonolysis of citral, which begins with the formation of primary ozonides (POZs) that decompose into Criegee intermediates (CIs). Although CIs have been previously implicated in tropospheric oxidation, the majority are simple compounds for their class, such as CH2OO· or CH3CHOO·. This study, however, reports on the generation and reaction kinetics of larger CIs, which have been shown to oxidize NO and SO2 into NO2 and SO3, respectively, leading to the production of nitric acid and sulfuric acid. Furthermore, the reactions between these CIs, and H2O and SO2 may serve as the dominant mechanism for removing the former from the troposphere, thereby determining the atmospheric CI concentrations. The low-volatility organic compounds potentially arising from the ozonolysis of citral, including aldehydes (–C(=O)H), ketones (–C(=O)–), alcohols (–OH), and hydroperoxides (–OOH), can form SOA through the nucleation, condensation, and/or partitioning of the condensed and gaseous phases.


Keywords: Secondary organic aerosol, Citral, Ozonolysis, Criegee intermediates



REFERENCES


Alecu, I.M., Zheng, J., Zhao, Y., Truhlar, D.G. (2010). Computational thermochemistry: Scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J. Chem. Theory Comput. 6, 2872–2887. https://doi.org/10.1021/ct100326h

Almatarneh, M.H., Elayan, I.A., Altarawneh, M., Hollett J.W. (2019). A computational study of the ozonolysis of sabinene. Theor. Chem. Acc. 138, 30. https://doi.org/10.1007/s00214-019-2420-7

Anglada, J.M., Sole, A. (2016). Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Phys. Chem. Chem. Phys. 18, 17698–17712. https://doi.org/10.1039/C6CP02531E

Aplincourt, P., Ruiz-López, M.F. (2000). Theoretical investigation of reaction mechanisms for carboxylic acid formation in the atmosphere. J. Am. Chem. Soc. 122, 8990–8989. https://doi.org/10.1021/ja000731z

Atkinson, R. (1997). Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and Alkenes. J. Phys. Chem. Ref. Data 26, 215–290. https://doi.org/10.1063/1.556012

Atkinson, R., Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 37, S197–S219. https://doi.org/10.1016/S1352-2310(03)00391-1

Berresheim, H., Adam, M., Monahan, C., O'Dowd, C.D., Plane, J.M.C., Bohn, B., Rohrer, F. (2014). Missing SO2 oxidant in the coastal atmosphere? – observations from high-resolution measurements of OH and atmospheric sulfur compounds. Atmos. Chem. Phys. 14, 12209–12223. https://doi.org/10.5194/acp-14-12209-2014

Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., Paasonen, P., Plass-Dulmer, C., Sipila, M., Petaja, T., Mauldin, L., Berresheim, H., Kulmala, M. (2013). Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations. Atmos. Chem. Phys. 13, 3865–3879. https://doi.org/10.5194/acp-13-3865-2013

Calogirou, A., Larsen, B.R., Kotzias, D. (1999). Gas-phase terpene oxidation products: A review. Atmos. Environ. 33, 1423–1439. https://doi.org/10.1016/S1352-2310(98)00277-5

Canneaux, S., Bohr, F., Henon, E. (2014). KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results. J. Comput. Chem. 35, 82–93. https://doi.org/10.1002/jcc.23470

Caravan, R.L., Vansco, M.F., Au, K., Khan, M.A.H., Li, Y.L., Winiberg, F.A.F., Zuraski, K., Lin, Y.H., Chao, W., Trongsiriwat, N., Walsh, P.J., Osborn, D.L., Percival, C.J., Lin, J.M., Shallcross, D.E., Sheps, L., Klippenstein, S.J., Taatjes, C.A., Lester, M.I. (2020). Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Proc. Natl. Acad. Sci. U.S.A. 117, 9733–9740. https://doi.org/10.1073/pnas.1916711117

Chhantyal-Pun, R., Welz, O., Savee, J.D., Eskola, A.J., Taatjes, C.A. (2016). Direct measurements of unimolecular and bimolecular reaction kinetics of the Criegee intermediate (CH3)2COO. J. Phys. Chem. A 121, 4–15. https://doi.org/10.1021/acs.jpca.6b07810

Deng, P., Wang, L.Y., Wang, L.M. (2018). Mechanism of gas-phase ozonolysis of β-Myrcene in the atmosphere. J. Phys. Chem. A 122, 3013–3020. https://doi.org/10.1021/acs.jpca.8b00983

Friedman, B., Farmer, D.K. (2018). SOA and gas phase organic acid yields from the sequential photooxidation of seven monoterpenes. Atmos. Environ. 187, 335–345. https://doi.org/10.1016/j.atmosenv.2018.06.003

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., …, Fox, D.J. (2009). Gaussian 09. Revision B.01, Wallingford CT.

Gil, A., van Baren, C.M., Di Leo Lira, P., Bandoni, A.L. (2007). Identification of the genotype from contents and composition of the essential oil of lemon verbena (Aloysia citriodora Palau). J. Agric. Food Chem. 55, 8664–8669. https://doi.org/10.1021/jf0708387

Goldstein, A.H., Galbally, I.E. (2007). Known and unexplored organic constituents in the earth’s atmosphere. Environ. Sci. Technol. 41, 1514–1521. https://doi.org/10.1021/es072476p

Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P. (1995). A global-model of natural volatile organic compound emissions. J. Geophys. Res. 100, 8873–8892. https://doi.org/10.1029/94JD02950

Hallquist, M., Wenger, J., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., …, Wildt, J. (2009). The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 9, 5155–5236. https://doi.org/10.5194/acpd-9-3555-2009

Huang, H.L., Chao, W., Lin, J.J.M. (2015). Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Proc. Natl. Acad. Sci. U.S.A. 112, 10857–10862. https://doi.org/10.1073/pnas.1513149112

Jackson, S.R., Ham, J.E., Harrison, J.C., Wells, J.R. (2016). Identification and quantification of carbonyl-containing α-pinene ozonolysis products using O-tert-butylhydroxylamine hydrochloride. J. Atmos. Chem. 74, 325–338. https://doi.org/10.1007/s10874-016-9344-6

Jackson, S.R., Harrison, J.C., Ham, J.E., Wells, J.R. (2017). A chamber study of alkyl nitrate production formed by terpene ozonolysis in the presence of NO and alkanes. Atmos. Environ. 171, 143–148. https://doi.org/10.1016/j.atmosenv.2017.10.002

Jaoui, M., Edney, E.O., Kleindienst, T.E., Lewandowski, M., Offenberg, J.H., Surratt, J.D., Seinfeld, J.H. (2008). Formation of secondary organic aerosol from irradiated -pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide. J. Geophys. Res. 113, D09303. https://doi.org/ 10.1029/2007jd009426

Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., …, Worsnop, D. (2009). Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529. https://doi.org/10.1126/science.1180353

Kleindienst, T.E., Edney, E.O., Lewandowski, M., Offenberg, J.H., Jaoui, M. (2006). Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOx and SO2. Environ. Sci. Technol. 40, 3807–3812. https://doi.org/10.1021/es052446r

Kuwata, K.T., Guinn, E.J., Hermes, M.R., Fernandez, J.A., Mathison, J.M., Huang, K. (2015). A computational re-examination of the Criegee intermediate-sulfur dioxide reaction. J. Phys. Chem. A 119, 10316–10335. https://doi.org/10.1021/acs.jpca.5b06565

Lin, X.X., Liu, Y.R., Huang, T., Xu, K.M., Zhang, Y., Jiang, S., Gai, Y.B., Zhang, W.J., Huang, W. (2014). Theoretical studies of the hydration reactions of stabilized Criegee intermediates from the ozonolysis of β-pinene. RSC Adv. 4, 28490–28498. https://doi.org/10.1039/c4ra04172k

Long, B., Bao, J.L., Truhlar, D.G. (2019). Rapid unimolecular reaction of stabilized Criegee intermediates and implications for atmospheric chemistry. Nat. Commun. 10, 2003. https://doi.org/10.1038/s41467-019-09948-7

Martínez, E., Cabañas, B., Aranda, A. Martín, P., Salgado, S. (1999). Absolute rate coefficients for the gas-phase reactions of NO3 radical with a series of monoterpenes at T = 298 to 433 K. J. Atmos. Chem. 33, 265–282. https://doi.org/10.1023/A:1006178530211

Mauldin, R.L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V.M., Kulmala, M. (2012). A new atmospherically relevant oxidant of sulphur dioxide. Nature 488, 193–196. https://doi.org/10.1038/nature11278

Messina, P., Lathière, J., Sindelarova, K., Vuichard, N., Granier, C., Ghattas, J., Cozic, A., Hauglustaine, D.A. (2016). Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmos. Chem. Phys. 16, 14169–14202. https://doi.org/10.5194/acp-16-14169-2016

Murray, L.T., Logan, J.A., Jacob, D.J. (2013). Interannual variability in tropical tropospheric ozone and OH: The role of lightning. J. Geophys. Res. 118, 11468–11480. https://doi.org/10.1002/jgrd.50857

Nagori, J., Janssen, R.H.H., Fry, J.L., Krol, M., Jimenez, J.L., Hu, W., Vilà-Guerau de Arellano, J. (2019). Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US. Atmos. Chem. Phys. 19, 701–729. https://doi.org/10.5194/acp-19-701-2019

Neeb, P., Sauer, F., Horie, O., Moortgat, G.K. (1997). Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour. Atmos. Environ. 31, 1417–1423. https://doi.org/10.1016/S1352-2310(96)00322-6

Newsome, B., Evans, M. (2017). Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing. Atmos. Chem. Phys. 17, 14333–14352. https://doi.org/10.5194/acp-2017-12

Nguyen, T.B., Tyndall, G.S., Crounse, J.D., Teng, A.P., Bates, K.H., Schwantes, R.H., Coggon, M.M., Zhang, L., Feiner, P., Milller, D.O., Skog, K.M., Rivera-Rios, J.C., Dorris, M., Olson, K.F., Koss, A., Wild, R.J., Brown, S.S., Goldstein, A.H., de Gouw, J.A., …, Wennberg, P.O. (2016). Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Phys. Chem. Chem. Phys. 18, 10241–10254. https://doi.org/10.1039/c6cp00053c

Oberdorster, G., Oberdorster, E., Oberdorster, J. (2005). Nanotoxicology: Anemerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839. https://doi.org/10.1289/ehp.7339

Oliveira, R.C.D.M., Bauerfeldt, G.F. (2012). Thermochemical analysis and kinetics aspects for a chemical model for camphene ozonolysis. J. Chem. Phys. 137, 134306. https://doi.org/10.1063/1.4757150

Orlando, J.J., Barbara Nozière, Tyndall, G.S., Orzechowska, G.E., Paulson, S.E., Rudich, Y. (2000). Product studies of the OH‐ and ozone‐initiated oxidation of some monoterpenes. J. Geophys. Res. 105, 11561–11572. https://doi.org/10.1029/2000JD900005

Pope, C.A. III, Dockery, D.W. (2006). Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 56, 709–742. https://doi.org/10.1080/10473289.2006.10464545

Presto, A.A., Huff Hartz, K. E., Donahue, N.M. (2005). Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration. Environ. Sci. Technol. 39, 7046–7054. https://doi.org/10.1021/es050174m

Qi, B., Chao, Y.T. (2007). Theoretical study on the mechanism and kinetics of the reaction of Criegee radical CH2O2 with H2O. Acta Chim. Sinica 65, 2117–2123.

Qin, M.M., Hu, Y.T., Wang, X.S., Vasilakos, P., Boyd, C.M., Xu, L., Song, Y., Ng, N.L., Nenes, A., Russell, A.G. (2018). Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ. Atmos. Environ. 184, 146–155. https://doi.org/10.1016/j.atmosenv.2018.03.042

Rauber, C.S., Guterres, S.S., Schapoval, E.E.S. (2005). LC determination of citral in Cymbopogon citratus volatile oil. J. Pharm. Biomed. Anal. 37, 597–601. https://doi.org/10.1016/j.jpba.2004.10.042

Ridley, D., Cain, M., Methven, J., Arnold, S. (2017). Sensitivity of tropospheric ozone to chemical kinetic uncertainties in air masses influenced by anthropogenic and biomass burning emissions. Geophys. Res. Lett. 44, 7472–7481. https://doi.org/10.1002/2017GL073802

Saddiq, A.A., Khayyat, S.A. (2010). Chemical and antimicrobial studies of monoterpene: Citral. Pestic. Biochem. Phys. 98, 89–93. https://doi.org/10.1016/j.pestbp.2010.05.004

Sarwar, G., Fahey, K., Kwok, R., Gilliam, R.C., Roselle, S.J., Mathur, R., Xue, J., Yu, J.Z., Carter, W.P.L. (2013). Potential impacts of two SO2 oxidation pathways on regional sulfate concentrations: Aqueous-phase oxidation by NO2 and gas-phase oxidation by Stabilized Criegee Intermediates. Atmos. Environ. 68, 186–197. https://doi.org/10.1016/j.atmosenv.2012.11.036

Sato, K., Jia, T., Tanabe, K., Morino, Y., Kajii, Y., Imamura, T. (2016). Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of β-pinene ozonolysis secondary organic aerosol. Atmos. Environ. 130, 127–135. https://doi.org/10.1016/j.atmosenv.2015.08.047

Sauer, F., Schäfer, C., Neeb, P., Horie, O., Moortgat, G.K. (1999). Formation of hydrogen peroxide in the ozonolysis of isoprene and simple alkenes under humid conditions. Atmos. Environ. 33, 229–241. https://doi.org/10.1016/S1352-2310(98)00152-6

Scorch, C., Wissenbach, D. K., Franck, U., Wendisch, M., Schlink, U. (2017). Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols. Environ. Pollut. 226, 463–472. https://doi.org/10.1016/j.envpol.2017.04.030

Shiroudi, A., Deleuze, M.S. (2014). Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: The H abstraction pathway. J. Phys. Chem. A 118, 4593–4610. https://doi.org/10.1021/jp500124m

Sipilä, M., Jokinen, T., Berndt, T., Richters, S., Makkonen, R., Donahue, N. M., Mauldin III, R. L, Kurten, T., Paasonen, P., Sarnela, N. (2014). Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids. Atmos. Chem. Phys. 14, 12143–12153. https://doi.org/10.5194/acp-14-12143-2014

Stangl, C.M., Krasnomowitz, J.M., Apsokardu, M.J., Tiszenkel, L., Ouyang, Q., Lee, S., Johnston, M.V. (2019). Sulfur dioxide modifies aerosol particle formation and growth by ozonolysis of monoterpenes and isoprene. J. Geophys. Res. 124, 4800–4811. https://doi.org/10.1029/2018JD030064

Sun, J.F., Mei, Q., Wei, B., Huan, L., Xie, J., He, M.X. (2018). Mechanisms for ozone-initiated removal of biomass burning products from the atmosphere. Environ. Chem. 15, 83–91. https://doi.org/10.1071/EN17212

Taatjes, C.A., Welz, O., Eskola, A.J., Savee, J.D., Scheer, A.M., Shallcross, D.E., Rotavera, B., Lee, E.P.F., Dyke, J.M., Mok, D.K.W., Osborn, D.L., Percival, C.J. (2013). Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340, 177–180. https://doi.org/10.1126/science.1234689

Truhlar, D.G., Garrett, B.C., Klippenstein, S.J. (1996). Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800. https://doi.org/10.1021/jp953748q

Vereecken, L., Harder, H., Novelli, A. (2012). The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere. Phys. Chem. Chem. Phys. 14, 14682–14695. https://doi.org/10.1039/c2cp42300f

Wang, L.Y., Wang, L.M. (2017). Mechanism of gas-phase ozonolysis of sabinene in the atmosphere. Phys. Chem. Chem. Phys. 19, 24209. https://doi.org/10.1039/c7cp03216a

Wang, X., Sun, J., Bao, L., Mei, Q., Wei, B., An, Z., Xie, J., He, M.X. (2019). Mechanisms and kinetic parameters for the gas-phase reactions of 3-methyl-3-buten-2-one and 3-methyl-3-penten-2-one with ozone. J. Phys. Chem. A 123, 2745–2755. https://doi.org/10.1021/acs.jpca.8b12025

Ye, J., Abbatt, J.P.D., Chan, A.W.H. (2018). Novel Pathway of SO2 oxidation in the atmosphere: Reactions with monoterpene ozonolysis intermediates and secondary organic aerosol. Atmos. Chem. Phys. 18, 5549–5565. https://doi.org/10.5194/acp-2017-1054

Zhang, H., Yee, L.D., Lee, B.H., Curtis, M.P., Worton, D.R., Isaacman-VanWertz, G., Offenberg, J.H., Lewandowski, M., Kleindienst, T.E., Beaver, M.R., Holder, A.L., Lonneman, W.A., Docherty, K.S., Jaoui, M., Pye, H.O.T., Hu, W., Day, D.A., Campuzano-Jost, P., Jimenez, J.L., …, Goldstein, A.H. (2018). Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proc. Natl. Acad. Sci. U.S.A. 115, 2038–2043. https://doi.org/10.1073/pnas.1717513115

Zheng, J.J., Zhao, Y., Truhlar, D.G. (2009). The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights. J. Chem. Theory Comput. 5, 808–821. https://doi.org/10.1021/ct800568m


Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.