Special Issue on COVID-19 Aerosol Drivers, Impacts and Mitigation (XIV)

Rehana Khan1,2, Kanike Raghavendra Kumar  3,1, Tianliang Zhao This email address is being protected from spambots. You need JavaScript enabled to view it.1

1 Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), International Joint Laboratory on Climate and Environment Change (ILCEC), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
2 Department of Physics, Higher Education, Government of Khyber Pakhtunkhwa Peshawar 25000, Pakistan
3 Department of Physics, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, India


Received: October 18, 2020
Revised: February 14, 2021
Accepted: February 14, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.200597  

  • Download: PDF


Cite this article:

Khan, R., Kumar, K.R., Zhao, T. (2021). The Impact of Lockdown on Air Quality in Pakistan during the COVID-19 Pandemic Inferred from the Multi-sensor Remote Sensed Data. Aerosol Air Qual. Res. 21, 200597. https://doi.org/10.4209/aaqr.200597


HIGHLIGHTS

  • Air quality during the COVID-19 lockdown is examined over Pakistan.
  • A considerable reduction in concentration levels is evident over the study domain.
  • We found reduced concentrations of AOT (9.8%) and PM2.5 (7.39%) during lockdown.
  • O3 is increased by 4.13%–5.78% amidst the role played by the meteorology.
 

ABSTRACT 


The present study utilized multi-sensory gridded and reanalysis data in conjunction with the meteorological variables to evaluate the impact of lockdown due to the Coronavirus disease of 2019 (COVID-19) pandemic on the changes of concentration of atmospheric pollutants in Pakistan. We focused on assessing the significant changes of pollutant concentrations during March–May for the years 2019 and 2020 utilizing the satellite datasets observed from the Moderate Resolution Imaging Spectroradiometer (MODIS), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounder (AIRS), and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) reanalysis data. Low pollution levels were observed throughout the COVID-19 (March 25–May 31, 2020) compared to a similar period in 2019. The association of meteorology with air pollutants found that the periods of enhanced temperature and relative humidity likely contributed to a cleaner environment over the Indus Basin Region (IBR) and Balochistan Plateau (BP). The decrease in the mean planetary boundary layer Sulphur dioxide (SO2) during the lockdown period of 2020 (DLP-2020) was evident by –36% in BP, –34% in Khyber Pakhtunkhwa (KPK), and –15.15% in IBR when compared to before the lockdown period of 2019 (BLP-2019). This is attributed to the limited transportation and control action plans of industrial activities including combustion sources taken by the Government of Pakistan for the DLP-2020 phase. During DLP-2020, a variable and least significant decline in surface particulate matter of size 2.5 µm (PM2.5) concentration was observed in the urban regions of KPK (–19.17%) followed by IBR (–0.82%) and BP (–0.26%). Overall, a considerable reductions in Carbon monoxide (CO) and black carbon (BC) concentrations were smaller in rural and suburban areas of BP (–3.61%, –8.57%) followed by KPK (–0.79%, –11.39%) and IBR (–3.30%, –11.39%), respectively. This is due to the reduction in local emissions related to the lockdown measures taken in the control of pandemic. However, the ozone (O3) concentrations witnessed an increase to a lower extent as 11.39%, 5.78%, and 4.74% in KPK, BP, and IBR, respectively attributed to rising in solar radiation intensity and temperature in hot summers, and decrease in NOx levels during the study period.


Keywords: Air quality, Atmospheric pollutants, COVID-19, Pakistan




Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.