Jihwan Son1,2, Kwangrae Kim1, Seungmi Kwon1, Seung-Myung Park2, Kwangtae Ha1, Yunmi Shin1, Mijin Ahn1, Seogju Cho1, Jinho Shin1, Yongseung Shin1, Gangwoong Lee This email address is being protected from spambots. You need JavaScript enabled to view it.2 

1 Seoul Metropolitan Government Research Institute of Public Health and Environment, Gwacheon, Gyeonggi 13818, Korea
2 Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Gyeonggi 17035, Korea


Received: September 27, 2020
Revised: January 17, 2021
Accepted: February 25, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.200573  

  • Download: PDF


Cite this article:

Son, J., Kim, K., Kwon, S., Park, S.M., Ha, K., Shin, Y., Ahn, M., Cho, S., Shin, J., Shin, Y., Lee, G. (2021). Source Quantification of PM10 and PM2.5 Using Iron Tracer Mass Balance in a Seoul Subway Station, South Korea. Aerosol Air Qual. Res. 21, 200573. https://doi.org/10.4209/aaqr.200573


HIGHLIGHTS

  • We measured PM and heavy metal compositions in subway station sectors.
  • PM behaviours were modelled with mass balance of PM mass and its iron content.
  • Controlling PM from tunnel is the most effective way to reduce PM in subway station.
 

ABSTRACT


In this study, we simultaneously measured the PM10 and PM2.5 mass concentrations and their heavy metal content for three days at a subway station in Seoul to investigate the airborne PM flows. The average concentrations were 59 µg m–3, 37 µg m–3, 111 µg m–3, and 369 µg m–3 for the PM10 and 43 µg m–3, 28 µg m–3, 58 µg m–3, and 132 µg m–3 for the PM2.5 at the outdoor air inlet, in the concourse, on the platform, and in the tunnel, respectively. We also found strong correlations between the temporal variations at adjacent sampling locations for both fractions, although they were higher for the PM2.5. Additionally, of the airborne trace metals detected at the sampling locations inside the station (the concourse, platform, and tunnel), iron (Fe) displayed the highest concentration and was thus selected as a tracer of PM. Applying a simple mass balance model to the Fe concentrations and ventilation rates revealed that 78% of the PM10 and 62% of the PM2.5 on the platform emanated from the tunnel, whereas 84% of the PM10 and 87% of the PM2.5 in the concourse originated outdoors (and arrived in the filtered air). These results further confirm that reducing PM emission from the tunnel is the most effective strategy for improving air quality on the platform and achieving compliance with the national guideline.


Keywords: Subway, Mass balance model, Air quality, Particle matter, Heavy metal



REFERENCES


Carteni, A., Cascetta, F., Campana, S. (2015). Underground and ground-level particulate matter concentration in an Italian metro system. Atmos. Environ. 101, 328–337. https://doi.org/10.1016/j.atmosenv.2014.11.030

Chen, Y.Y., Lu, C.Y., Chen, P.C., Mao, I.F., Chen, M.L. (2017). Analysis of aerosol composition and assessment of tunnel washing performance within a mass rapid transit system in Taiwan. Aerosol Air Qual. Res. 17, 1527–1538. https://doi.org/10.4209/aaqr.2017.03.0120

Cheng, Y.H., Yan, J.W. (2011). Comparison of particulate matter, CO, and CO2 levels in underground and ground-level stations in the Taipei mass rapid transit system. Atmos. Environ. 45, 4882–4891. https://doi.org/10.1016/j.atmosenv.2011.06.011

Colombi, C., Angius, S., Gianella, V., Lazzarini, M. (2013). Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system. Atmos. Environ. 70, 166–178. https://doi.org/10.1016/j.atmosenv.2013.01.035

Cusack, M., Talbot, N., Ondracek, J., Minguillon, M.C., Martins, V., Klouda, K., Schwarz, J., Zdimal, V. (2015) Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos. Environ. 18, 176–183. https://doi.org/10.1016/j.atmosenv.2015.08.013

Figueroa-Lara, J.J., Murcia-Gonzalez, J.M., Garcia-Martinez, R., Romero-Romo, M., Torres-Rodriguez, M., Mugica-Alvarez, V. (2019). Effect of platform subway depth on the presence of Airborne PM2.5, metals and toxic organic species. J. Hazard. Mater. 377, 427–436. https://doi.org/10.1016/j.jhazmat.2019.05.091

Jung, H.J., Kim, B.W., Malek, M.A., Koo, Y.S., Jung, J.H., Son, Y.S., Kim, J.C., Kim, H.K., Ro, C.U. (2012). Chemical speciation of size-segregated floor dust and airborne magnetic particles collected at underground subway stations in Seoul, Korea. J. Hazard. Mater. 213–214, 331–340. https://doi.org/10.1016/j.jhazmat.2012.02.006

Kam W., Cheung, K., Daher, N., Sioutas, C. (2011). Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ. 45, 1506–1516. https://doi.org/10.1016/j.atmosenv.2010.12.049

Kim, K.H., Ho, D.X., Jeon, J.S., Kim, J.C. (2012). A noticeable shift in particulate matter levels after platform screen door installation in a Korean subway station. Atmos. Environ. 49, 219–223. https://doi.org/10.1016/j.atmosenv.2011.11.058

Kwon, S.B., Jeong, W.T., Park, D.S., Kim, K.T., Cho, K.H. (2015). A multivariate study for characterizing particulate matter (PM10, PM2.5, PM1) in Seoul metropolitan subway stations. Korea. J. Hazard. Mater. 297, 295–303. https://doi.org/10.1016/j.jhazmat.2015.05.015

Lee, Y.G., Choi, K.M., Jung, W.S., Versoza, M.E., Barabad, M.L.M., Kim, T.S., Park, D.S. (2018). Generation characteristics of nanoparticles emitted from subways in operation. Aerosol Air Qual. Res. 18, 2230–2239. https://doi.org/10.4209/aaqr.2017.11.0439

Lovett, C., Shirmohammadi, F., Sowlat, M.H., Sioutas, C. (2018). Commuting in Los Angeles: Cancer and non-cancer health risks of roadway, light-rail and subway transit routes. Aerosol Air Qual. Res. 18, 2363–2374. https://doi.org/10.4209/aaqr.2017.09.0331

Loxham, M., Cooper, M.J., Gerlofs-Nijland, M.E., Cassee, F.R., Davies, D.E., Palmer, M.R., Teagle, D.A.H. (2013). Physicochemical characterization of airborne particulate matter at a mainline underground railway station. Environ. Sci. Technol. 47, 3614–3622. https://doi.org/10.1021/es304481m

Martins, V., Moreno, T., Minguillon, M.C., Amato, F., Miguel, E., Capdevila, M., Querol, X. (2015). Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 511, 711–722. https://doi.org/10.1016/j.scitotenv.2014.12.013

Martins, V., Moreno, T., Mendes, L., Eleftheriadis, K., Diapouli, E., Alves, C.A., Duarte, M., Miguel, E., Capdevila, M., Querol, X., Minguillon, M.C. (2016a). Factors controlling air quality in different European subway systems. Environ. Res. 146, 35–46. https://doi.org/10.1016/j.envres.2015.12.007

Martins, V., Moreno, T., Minguillon, M.C., Van-Drooge, B.L., Reche, C., Amato, F., De Miguel, E., Capdevila, M., Centelles, S. (2016b). Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain. Environ. Pollut. 208, 125–136. https://doi.org/10.1016/j.envpol.2015.07.004

Midander, K., Elihn, K., Wallen, A., Karlsson, A.K.B., Walinder, I. O. (2012). Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach. Sci. Total Environ. 427–428, 390–400. https://doi.org/10.1016/j.scitotenv.2012.04.014

Minguillon, M.C., Reche, C., Martins, V., Amato, F., Miguel, E., Capdevila, M., Centelles, S., Querol, X., Moreno, T. (2018). Aerosol sources in subway environments. Environ. Res. 167, 314–328. https://doi.org/10.1016/j.envres.2018.07.034

Moreno, T., Perez, N., Reche, C., Martins, V., De-Miguel, E., Capdevila, M., Centelles, S., Minguillon, M.C., Amato, F., Alastuey, A., Querol, X., Gibbons, W. (2014). Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 92, 461–468. https://doi.org/10.1016/j.atmosenv.2014.04.043

Moreno, T., Reche, C., Rivas, I., Minguillon, M.C., Martins, V., Vargas, C., Buonanno, G., Parga J., Pandolfi, M., Brines M., Ealo, M., Fonseca, A.S., Amato, F., Sosa, G., Capdevila, M., Miguel, E., Querol, X., Gibbons, W. (2015). Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barocelona. Environ. Res. 142, 495–510. https://doi.org/10.1016/j.envres.2015.07.022

Moreno, T., Miguel, E. (2018). Improving air quality in subway systems: An overview. Environ. Pollut. 239, 829–831. https://doi.org/10.1016/j.envpol.2018.01.077

Mugica-Avarez, V., Figueroa-Lara, J., Romero-Romo, M., Sepulveda-Sanchez, J., Lopez-Moreno, T. (2012). Concentrations and properties of airborne particles in the Mexico City subway system. Atmos. Environ. 49: 284–293. https://doi.org/10.1016/j.atmosenv.2011.11.038

Murruni, L.G., Solanes, V., Debray, M., Kreiner, A.J., Davidson, J., Davidson, M., Vazquez, M., Ozafran, M. (2009). Concentration and elemental composition of Particulate matter in the Buenos Aires underground system. Atmos. Environ. 43, 4577–4583. https://doi.org/10.1016/j.atmosenv.2009.06.025

Pan, S., Du, S., Wang, X., Zhang, X., Xia, L., Jiaping, L., Pei, F. (2019). Analysis and interpretation of the particulate matter (PM10 and PM2.5) concentrations at the subway stations in Beijing. China. Sustain. Cities Soc. 45, 366–377. https://doi.org/10.1016/j.scs.2018.11.020

Park, D.S., Oh, M.S., Yoon, Y.H., Park, E.Y., Lee, K.Y. (2012). Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Atmos. Environ. 49, 180–185. https://doi.org/10.1016/j.atmosenv.2011.11.064

Park, D.S., Lee T.J., Hwang, D.Y., Jung, W.S., Lee, Y.G., Cho, K.C., Kim, D.S., Lee, K.Y (2014). Identification of the sources of PM10 in a subway tunnel using positive matrix factorization. J. Air Waste Manage. Assoc. 64, 1361–1368. https://doi.org/10.1080/10962247.2014.950766

Park, H.W., Kim, W.R., Cho, Y.M., (2013). Field application of a double filtration Process to control fine dust in a metro subway station. J. Korean Soc. Atmos. Environ. 29, 625–633. https://doi.org/10.5572/KOSAE.2013.29.5.625

Park, J.H. (2013). The world of urban railway 2. The Korean Society for Urban Railway, Seoul, pp. 25–34. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02368505

Qiao, T., Xiu, G., Zheng, Yi., Yang, J., Wang, L., Yang, J., Huang, Z. (2015). Preliminary investigation of PM1, PM2.5, PM10 and its metal elemental composition in tunnels at a subway station in Shanghai, China. Transp. Res. D 41, 136–146. https://doi.org/10.1016/j.trd.2015.09.013

Querol, X., Moreno, T., Karanasiou, A., Reche, C., Alastuey, A., Viana, M., Font, O., Gil, J., De-Miguel, E., Capdevila, M. (2012). Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 12, 5055–5076. https://doi.org/10.5194/acp-12-5055-2012

Raut, J.C., Chazette, P., Fortain, A., (2009). Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris. Atmos. Environ. 43, 860–868. https://doi.org/10.1016/j.atmosenv.2008.10.038

Shen, J., Gao, Z. (2019). Commuter exposure to particulate matters in four common transportation modes in Nanjing. Build. Environ. 156, 156–170. https://doi.org/10.1016/j.buildenv.2019.04.018

Son, Y.S., Salama, A., Jeong, H.S., Kim, S.Y., Jeong, J.H., Lee, J.H., Sunwoo, Y., Kim, J.C. (2013). The effect of platform screen doors on PM10 levels in a subway station and a trial to reduce PM10 in tunnels. Asian J. Atmos. Environ. 7, 38–47. https://doi.org/10.5572/ajae.2013.7.1.038

Woo, S.H., Kim, J.B., Bae, G.N., Hwang, M.S., Tahk, G.H., Yoon, H.H., Yook, S.J. (2018). Investigation of diurnal pattern of generation and resuspension of particles induced by moving subway trains in an underground tunnel. Aerosol Air Qual. Res. 18, 2240–2252. https://doi.org/10.4209/aaqr.2017.11.0444

Yim, B.B., Lee, K.S., Kim, J.I., Hong, H.S., Kim, J.W., Jo, K.H., Jung, E.G., Kim, I.K., An, Y.S. (2014). Evaluation on indoor air quality by statistical analysis of indoor air pollutants concentration in a Seoul metropolitan underground railway station. J. Korean Soc. Atmos. Environ. 30, 233–244. https://doi.org/10.5572/KOSAE.2014.30.3.233


Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.