Pulmonary and Neurological Health Impacts from Airborne Particulate Matter (IV)

Léo Macé, Chrystelle Ibanez This email address is being protected from spambots. You need JavaScript enabled to view it., Thomas Gelain, Cécile Bodiot, Laure Juhel, François Gensdarmes

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses cedex, 92262, France


Received: September 21, 2020
Revised: January 30, 2021
Accepted: March 12, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.200504  


Cite this article:

Macé, L., Ibanez, C., Gelain, T., Bodiot, C., Juhel, L., Gensdarmes, F. (2021). Design of an Inhalation Chamber and Metrology Assessment to Study Tungsten Aerosol Neurotoxic Effects. Aerosol Air Qual. Res. 21, 200504. https://doi.org/10.4209/aaqr.200504


HIGHLIGHTS

  • Strategy to control generation of tungsten aerosols with low mass concentrations.
  • Measurement of tungsten particles aerodynamic and electrical mobility diameters.
  • Measurement shows good agreement between instruments for extreme particle density.
  • Aerosol characteristics discussed for reliable calculation of deposition in airways.
  • Aerosol dispersion in the inhalation chamber was studied by CFD simulations.
 

ABSTRACT


To evaluate the neurotoxic effects from exposure to airborne tungsten, we developed a method of generating mass concentrations of this element between 5 and 10 mg m−3, the time-weighted average occupational exposure limits. We then conducted measurements of the aerosol—a challenge due to the high particle density—that enabled us to calculate the deposition in the upper airway and lungs.

First, we fed a mixture of coarse tungsten bead powder and aerosolizable tungsten powder, which had been combined in specific mass proportions, to an RBG 1000 (Palas®) equipped with a cyclone at the outlet that filtered out the coarse particles. Then, we simultaneously measured the resultant aerosol, which was generated in an inhalation chamber, using three pairs of instruments—a Dekati® Low Pressure Impactor (DLPI; 30 L min−1) and a gravimetric filter holder, a DLPI and a TSI® Aerodynamic Particle Sizer (APS; Model 3321), a TSI Engine Exhaust Particle Sizer (EEPS; Model 3090) and an APS—and symmetrical sampling lines.

The mass concentrations obtained with the DLPI and the filter holder were extremely consistent with each other, and the mass median aerodynamic diameters based on the DLPI and the APS data (with the Stokes correction applied to the latter) were also fairly close (1.77 and 1.89 µm, respectively). Additionally, the count median diameter determined from the electrical mobility measured by the EEPS equaled 0.17 µm, which falls beyond both the intended range of the instrument and the range of previously studied aerodynamic sizes.

Overall, the results from the DLPI, the APS, and the EEPS showed very good agreement. Computational fluid dynamics (CFD) simulations of the airflows and aerosol dispersion in the inhalation chamber verified that the test aerosol was homogeneous and representative.


Keywords: Tungsten, Inhalation, Particle density, Neurotoxicology



REFERENCES


Agency for Toxic Substances and Disease Registry (ATSDR) (2015). Addendum to the Toxicological Profile for Tungsten. Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Sciences, Atlanta, GA 30333. https://www.atsdr.cdc.gov/toxprofiles/Tungsten_Addendum_508.pdf

Anderson, J.L., Apostoaei, A.I., Yiin, J.H., Fleming, D.A., Tseng, C.Y., Chen, P.H. (2016). Internal exposure to uranium in a pooled cohort of gaseous diffusion plant workers. Radiat. Prot. Dosim. 168, 471–477. https://doi.org/10.1093/rpd/ncv357

Andre, S., Charuau, J., Rateau, G., Vavasseur, C., Métivier, H. (1989). Design of a new inhalation device for rodents and primates. J. Aerosol Sci. 20, 647–656. https://doi.org/10.1016/0021-8502(89)90053-0

Bolt, A.M., Mann, K.K. (2016). Tungsten: An emerging toxicant, alone or in Combination. Curr. Environ. Health Rep. 3, 405–415. https://doi.org/10.1007/s40572-016-0106-z

Bolton, J.L., Marinero, S., Hassanzadeh, T., Natesan, D., Le, D., Belliveau, C., Mason, S.N., Auten, R.L., Bilbo, S.D. (2017). Gestational exposure to air pollution alters cortical volume, microglial morphology, and microglia-neuron interactions in a sex-specific manner. Front. Synaptic Neurosci. 9, 10. https://doi.org/10.3389/fnsyn.2017.00010

Buckley, A., Warren, J., Hodgson, A., Marczylo, T., Ignatyev, K., Guo, C., Smith, R. (2017). Slow lung clearance and limited translocation of four sizes of inhaled iridium nanoparticles. Part. Fibre Toxicol. 14, 5. https://doi.org/10.1186/s12989-017-0185-5

Calderon-Garciduenas, L., Reynoso-Robles, R., Vargas-Martinez, J., Gomez-Maqueo-Chew, A., Perez-Guille, B., Mukherjee, P.S., Torres-Jardon, R., Perry, G., Gonzalez-Maciel, A. (2016). Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease. Environ. Res. 146, 404–417. https://doi.org/10.1016/j.envres.2015.12.031

Carlini, E.A. (1973). Farmacologia Prática Sem Aparelhagem. São Paulo: Sarvier: 198.

Chae, N., Lee, M.H., Choi, S., Park, B., Song, J.S. (2019). Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning. J. Hazard. Mater. 369, 727–745. https://doi.org/10.1016/j.jhazmat.2019.02.093

Chen, L.C., Lippmann, M. (2015). Inhalation toxicology methods: The generation and characterization of exposure atmospheres and inhalational exposures. Curr. Protoc. Toxicol. 63, 24 24 21–24 24 23. https://doi.org/10.1002/0471140856.tx2404s63

Davies, N.C. (1968). The entry of aerosols into sampling tubes and heads. Br. J. Appl. Phys. 25, 921–932.

DeCarlo, P.F., Slowik, J.G., Worsnop, D.R., Davidovits, P., Jimenez, J.L. (2004). Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Aerosol Sci. Technol. 38, 1185–1205. https://doi.org/10.1080/027868290903907

Disdier, C., Chalansonnet, M., Gagnaire, F., Gate, L., Cosnier, F., Devoy, J., Saba, W., Lund, A.K., Brun, E., Mabondzo, A. (2017). Brain inflammation, blood brain barrier dysfunction and neuronal synaptophysin decrease after inhalation exposure to titanium dioxide nano-aerosol in aging rats. Sci. Rep. 7, 12196. https://doi.org/10.1038/s41598-017-12404-5

Dumkova, J., Smutna, T., Vrlikova, L., Le Coustumer, P., Vecera, Z., Docekal, B., Mikuska, P., Capka, L., Fictum, P., Hampl, A., Buchtova, M. (2017). Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part. Fibre Toxicol. 14, 55. https://doi.org/10.1186/s12989-017-0236-y

Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., Oberdorster, G. (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114, 1172–1178. https://doi.org/10.1289/ehp.9030

Gate, L., Knudsen, K.B., Seidel, C., Berthing, T., Chezeau, L., Jacobsen, N.R., Valentino, S., Wallin, H., Bau, S., Wolff, H., Sebillaud, S., Lorcin, M., Grossmann, S., Viton, S., Nunge, H., Darne, C., Vogel, U., Cosnier, F. (2019). Pulmonary toxicity of two different multi-walled carbon nanotubes in rat: Comparison between intratracheal instillation and inhalation exposure. Toxicol. Appl. Pharmacol. 375, 17–31. https://doi.org/10.1016/j.taap.2019.05.001

George, I., Uboldi, C., Bernard, E., Sobrido, M.S., Dine, S., Hagege, A., Vrel, D., Herlin, N., Rose, J., Orsiere, T., Grisolia, C., Rousseau, B., Malard, V. (2019). Toxicological assessment of ITER-like tungsten nanoparticles using an in Vitro 3D human airway epithelium model. Nanomaterials  9, 1374. https://doi.org/10.3390/nano9101374

Hatch, T., Choate, S.P. (1929). S Statistical description of the size properties of non uniform particulate substances. J. Franklin Inst. 207, 369–387. https://doi.org/10.1016/S0016-0032(29)91451-4

Heusinkveld, H.J., Wahle, T., Campbell, A., Westerink, R.H.S., Tran, L., Johnston, H., Stone, V., Cassee, F.R., Schins, R.P.F. (2016). Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology 56, 94–106. https://doi.org/10.1016/j.neuro.2016.07.007

Ibanez, C., Suhard, D., Tessier, C., Delissen, O., Lestaevel, P., Dublineau, I., Gourmelon, P. (2014). Intranasal exposure to uranium results in direct transfer to the brain along olfactory nerve bundles. Neuropathol. Appl. Neurobiol. 40, 477–488. https://doi.org/10.1111/nan.12061

Ibanez, C., Suhard, D., Elie, C., Ebrahimian, T., Lestaevel, P., Roynette, A., Dhieux-Lestaevel, B., Gensdarmes, F., Tack, K., Tessier, C. (2019). Evaluation of the nose-to-brain transport of different physico-chemical forms of uranium after exposure via inhalation of a UO4 aerosol in the rat. Environ. Health Perspect. 127, 97010. https://doi.org/10.1289/EHP4927

Jayaraj, R.L., Rodriguez, E.A., Wang, Y., Block, M.L. (2017). Outdoor ambient air pollution and neurodegenerative diseases, the neuroinflammation hypothesis. Curr. Environ. Health Rep. 4: 166–179. https://doi.org/10.1007/s40572-017-0142-3

Levesque, S., Surace, M.J., McDonald, J., Block, M.L. (2011). Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J. Neuroinflammation 8, 105. https://doi.org/10.1186/1742-2094-8-105

Lucchini, R.G., Dorman, D.C., Elder, A., Veronesi, B. (2012). Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology 33, 838–841. https://doi.org/10.1016/j.neuro.2011.12.001

Lucci, F., Tan, W., Krishnan, Hoeng, J., Vanscheeuwijck, P., Jaeger, R., Kuczaj, A.K. (2019). Experimental and computational investigation of a nose-only exposure chamber. Aerosol Sci. Technol. 54, 277–290. https://doi.org/10.1080/02786826.2019.1687843

Matthew, E., Warden, G., Dedman, J. (2001). A murine model of smoke inhalation. american journal of physiology. Lung Cell. Mol. Physiol. 280, L716–L723. https://doi.org/10.1152/ajplung.2001.280.4.L716

McGuinn, L.A., Windham, G.C., Kalkbrenner, A.E., Bradley, C., Di, Q., Croen, L.A., Fallin, M.D., Hoffman, K., Ladd-Acosta, C., Schwartz, J., Rappold, A.G., Richardson, D.B., Neas, L.M., Gammon, M.D., Schieve, L.A., Daniels, J.L. (2019). Early life exposure to air pollution and autism spectrum disorder: Findings from a multisite case-control study. Epidemiology 31, 103–114. https://doi.org/10.1097/EDE.0000000000001109

Nerisson, P., Simonin, O., Ricciardi, L., Douce, A., Fazileabasse, J. (2011). Improved CFD transport and boundary conditions models for low-inertia particles. Comput. Fluids 40, 79–91. https://doi.org/10.1016/j.compfluid.2010.08.013

Oberdorster, G., Elder, A., Rinderknecht, A. (2009). Nanoparticles and the brain: Cause for concern? J. Nanosci. Nanotechnol. 9, 4996–5007. https://doi.org/10.1166/jnn.2009.gr02

Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol. 16, 437–445. https://doi.org/10.1080/08958370490439597

Oudin, A., Forsberg, B., Adolfsson, A.N., Lind, N., Modig, L., Nordin, M., Nordin, S., Adolfsson, R., Nilsson, L.G. (2016). Traffic-related air pollution and dementia incidence in northern Sweden: A longitudinal study. Environ. Health Perspect. 124, 306–312. https://doi.org/10.1289/ehp.1408322

Peillon, S., Fauvel, S., Chagnot, C., Gensdarmes, F. (2017). Aerosol charaterization and particle scrubbing efficiency of underwater operations during laser cutting of steel components for dismantling of nuclear facilities. Aerosol Air Qual. Res. 17, 1363–1373. https://doi.org/10.4209/aaqr.2016.09.0421

Phalen, R.F. (1997). Methods in Inhalation Toxicology. Boca Raton, FLCRC Press.

Prajapati, M.V., Adebolu, O.O., Morrow, B.M., Cerreta, J.M. (2017). Original Research: Evaluation of pulmonary response to inhaled tungsten (IV) oxide nanoparticles in golden Syrian hamsters. Exp. Biol. Med. 242, 29–44. https://doi.org/10.1177/1535370216665173

Pujalte, I., Dieme, D., Haddad, S., Serventi, A.M., Bouchard, M. (2017). Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol. Lett. 265, 77–85. https://doi.org/10.1016/j.toxlet.2016.11.014

Radcliffe, P.M., Olabisi, A.O., Wagner, D.J., Leavens, T., Wong, B.A., Struve, M.F., Chapman, G.D., Wilfong, E.R., Dorman, D.C. (2009). Acute sodium tungstate inhalation is associated with minimal olfactory transport of tungsten (188W) to the rat brain. Neurotoxicology 30, 445–450. https://doi.org/10.1016/j.neuro.2009.02.004

Radcliffe, P.M., Leavens, T.L., Wagner, D.J., Olabisi, A.O., Struve, M.F., Wong, B.A., Tewksbury, E., Chapman, G.D., Dorman, D.C. (2010). Pharmacokinetics of radiolabeled tungsten (188W) in male Sprague-Dawley rats following acute sodium tungstate inhalation. Inhalation Toxicol. 22, 69–76. https://doi.org/10.3109/08958370902913237

Rihn, B., Kauffer, E., Martin, P., Coulais, C., Villa, M., Bottin, M.C., Vigneron, J.C., Edorh, A., Martinet, N. (1996). Short-term crocidolite inhalation studies in mice: Validation of an inhalation chamber. Toxicology 109, 147–156. https://doi.org/10.1016/0300-483x(96)03325-2

Roedel, E.Q., Cafasso, D.E., Lee, K.W., Pierce, L.M. (2012). Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles. Toxicol. Appl. Pharmacol. 259, 74–86. https://doi.org/10.1016/j.taap.2011.12.008

Rondeau, A., Peillon, S., Roynette, A., Sabroux, J.C., Gelain, T., Gensdarmes, F., Rohde, V., Grisolia, C., Chassefière, E. (2015). Characterization of dust particles produced in an all-tungsten wall tokamak and potentially mobilized by airflow. J. Nucl. Mater. 463, 873–876. https://doi.org/10.1016/j.jnucmat.2014.12.051

Sachdeva, S., Pant, S.C., Kushwaha, P., Bhargava, R., Flora, S.J. (2015). Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants. Food Chem. Toxicol. 82, 64–71. https://doi.org/10.1016/j.fct.2015.05.003

Sagot, B., Forthomme, A., Yahia, L.A.A., De La Bourdonnaye, G. (2017). Experimental study of cyclone performance for blow-by gas cleaning applications. J. Aerosol Sci. 110, 53–69. https://doi.org/10.1016/j.jaerosci.2017.05.009

Samson, E., Piot, I., Zhivin, S., Richardson, D.B., Laroche, P., Serond, A.P., Laurier, D., Laurent, O. (2016). Cancer and non-cancer mortality among french uranium cycle workers: The tracy cohort. BMJ Open 6, e010316. https://doi.org/10.1136/bmjopen-2015-010316

Sclichting, H. (1979). Boundary-Layer Theory. Seventh edition, Mc Graw-Hill, New York.

Shan, D., Xie, Y., Ren, G., Yang, Z. (2013). Attenuated effect of tungsten carbide nanoparticles on voltage-gated sodium current of hippocampal CA1 pyramidal neurons. Toxicol. in Vitro 27, 299–304. https://doi.org/10.1016/j.tiv.2012.08.025

Uboldi, C., Sanles Sobrido, M., Bernard, E., Tassistro, V., Herlin-Boime, N., Vrel, D., Garcia-Argote, S., Roche, S., Magdinier, F., Dinescu, G., Malard, V., Lebaron-Jacobs, L., Rose, J., Rousseau, B., Delaporte, P., Grisolia, C., Orsiere, T. (2019). In vitro analysis of the effects of ITER-like tungsten nanoparticles: cytotoxicity and epigenotoxicity in BEAS-2B cells. Nanomaterials 9, 1233. https://doi.org/10.3390/nano9091233

Wang, H.C., John, W. (1987). Particle density correction for the aerodynamic particle sizer. Aerosol Sci. Technol. 6, 191–198. https://doi.org/10.1080/02786828708959132

Wang, Y., Wang, B., Zhu, M.T., Li, M., Wang, H.J., Wang, M., Ouyang, H., Chai, Z.F., Feng, W.Y., Zhao, Y.L. (2011). Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol. Lett. 205, 26–37. https://doi.org/10.1016/j.toxlet.2011.05.001

Wasel, O., Freeman, J.L. (2018). Comparative assessment of tungsten toxicity in the absence or presence of other metals. Toxics 6, 66. https://doi.org/10.3390/toxics6040066

Wen, R., Yang, X., Hu, L., Sun, C., Zhou, Q., Jiang, G. (2016). Brain-targeted distribution and high retention of silver by chronic intranasal instillation of silver nanoparticles and ions in Sprague-Dawley rats. J. Appl. Toxicol. 36, 445–453. https://doi.org/10.1002/jat.3260


Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.