Jianyu Lin1, Xinyong Shen This email address is being protected from spambots. You need JavaScript enabled to view it.1,2, Lizhu Xing1, Huizheng Che3, B.N. Holben4

1 Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
2 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
3 State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
4 Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA


Received: August 4, 2020
Revised: March 28, 2021
Accepted: March 30, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.200503  


Cite this article:

Lin, J., Shen, X., Xing, L., Che, H., Holben, B.N. (2021). Analysis of Aerosol type and Fine- and Coarse-mode Aerosol Direct Radiative Forcing over Regions in East and Southeast Asia Based on AERONET Version 3 Data. Aerosol Air Qual. Res. 21, 200503. https://doi.org/10.4209/aaqr.200503


HIGHLIGHTS

  • The properties of aerosol were retrieved in five distinct background areas in Asia.
  • Utilizing PLDR and SSA, seven kinds of aerosol categories have been identified in Asia.
  • The properties about radiative forcing of fine- and coarse-mode aerosol were analyzed.
 

ABSTRACT


Based on the particle linear depolarization ratio (PLDR) and single-scattering albedo (SSA) values obtained for 1020 nm from Aerosol Robotic Network (AERONET) Version 3 Level 2.0 data collected in five regions, namely, northern China, Northwest Asia, the Tibetan Plateau, southern China and Southeast Asia, we classified seven types of aerosol (viz., purely dust, dust-dominated, pollution-dominated, non-absorbing [NA], weakly absorbing [WA], moderately absorbing [MA] and strongly absorbing [SA]) in order to assess the spatial and temporal distributions of their constituents and the radiative effects of their fine- and coarse-mode particles. The fine fraction dominated in northern China and also played a crucial role on the Tibetan Plateau and in southern China and Southeast Asia, whereas the coarse fraction prevailed in Northwest Asia. Furthermore, the fine-mode aerosol on the Tibetan Plateau exhibited its maximum radiative forcing efficiency (110.3 W m–2) during high concentrations of SA aerosol. Also, the lowest values for both the radiative forcing and the radiative forcing efficiency in southern China occurred during summer. Finally, the various aerosol constituents displayed distinct spatial and temporal distributions in Southeast Asia, with the SA aerosol contributing approximately 20% of the total aerosol on the Indochinese Peninsula and the NA and WA aerosol forming the largest percentages on the Malay Peninsula.


Keywords: Particle linear depolarization ratio, Single scatter albedo, Radiative forcing



REFERENCES


Balasubramanian, R., Gao, X., Hatakeyama, S., Hwang, J., Tsai, C.J. (2017). Overview of the special issue" PM2.5 in Asia" for 2015 Asian aerosol conference. Aerosol Air Qual. Res. 17, 351–355. https://doi.org/10.4209/aaqr.2017.01.0042

Bergstrom, R.W., Pilewskie, P., Russell, P.B., Redemann, J., Bond, T.C., Quinn, P.K, Sierau, B. (2007). Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys. 7, 5937–5943. https://doi.org/10.5194/acp-7-5937-2007

Bohren, C.F. and Huffman, D.R. (2008). Absorption and scattering of light by small particles. John Wiley & Sons.

Cairo, F, Donfrancesco, G., Di, Adriani, A., Pulvirenti, L., Fierli, F. (1999). Comparison of various linear depolarization parameters measured by lidar. Appl. Opt. 38, 4425. https://doi.org/10.1364/AO.38.004425

Cao, C., Zheng, S., Singh, R.P. (2014). Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005-2010) over Beijing, China. Atmos. Res. 150, 129–142. https://doi.org/10.1016/j.atmosres.2014.07.022

Che, H., Xia, X., Zhu, J., Li, Z., Dubovik, O., Holben, B., Goloub, P., Chen, H., Estelles, V., Cuevas-Agulló, E., Blarel, L., Wang, H., Zhao, H., Zhang, X., Wang, Y., Sun, J., Tao, R., Zhang, X., Shi, G. (2014). Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys. 14, 2125–2138. https://doi.org/10.5194/acp-14-2125-2014

Che, H., Zhang, X.Y., Xia, X., Goloub, P., Holben, B., Zhao, H., Wang, Y., Zhang, X.C., Wang, H., Blarel, L., Damiri, B., Zhang, R., Deng, X., Ma, Y., Wang, T., Geng, F., Qi, B., Zhu, J., Yu, J., Chen, Q., Shi, G. (2015). Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSENT) 2002-2013. Atmos. Chem. Phys. 15, 7619–7652. https://doi.org/10.5194/acp-15-7619-2015

Che, H., Qi, B., Zhao, H., Xia, X., Eck, T.F., Goloub, P., Dubovik, O., Estelles, V., Cuevas-Agulló, E., Blarel, L., Wu, Y., Zhu, J., Du, R., Wang, Y., Wang, H., Gui, K., Yu, J., Zheng, Y., Sun, T., Chen, Q., Shi, G., Zhang, X. (2018). Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSENT) in eastern China. Atmos. Chem. Phys. 18, 405–425. https://doi.org/10.5194/acp-18-405-2018

Chen, W.N., Chen, Y.W., Chou, C.C.K., Chang, S.Y., Lin, P.H., Chen, J.P. (2009). Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan. Atmos. Environ. 43, 2700–2708. https://doi.org/10.1016/j.atmosenv.2009.02.059

Deng, H., Chen, Y., Shi, X., Li, W., Wang, H., Zhang, S., Fang, G. (2014). Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos. Res. 138, 346–355. https://doi.org/10.1016/j.atmosres.2013.12.001

Dubovik, O., Holben, B., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D., Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590–608. https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B.N., Mishchenko, M., Yang, P., Eck, T.F., Volten, H., Mufioz, O., Veihelmann, B. (2006). Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 111, D11208. https://doi.org/10.1029/2005JD006619

Eck, T.F., Holben, B.N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H.B., Chatenet, B., Gomes, L., Zhang, X.Y., Tsay, S.C., Ji, Q., Giles, D., Slutsker, I. (2005). Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-pacific. J. Geophys. Res. 110, D06202. https://doi.org/10.1029/2004JD005274

Eck, T.F., Holben, B.N., Sinyuk, A., Pinker, R.T., Goloub, P., Chen, H., Chatenet, B., Li, Z., Singh, R.P., Tripathi, S.N., Reid, J.S., Giles, D.M., Dubovik, O., O'Neill, N.T., Smirnov, A., Wang, P., Xia, X. (2010). Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J. Geophys. Res. 115, D19205. https://doi.org/10.1029/2010JD014002

Feng, N., Christopher, S.A. (2013). Satellite and surface-based remote sensing of Southeast Asian aerosols and their radiative effects. Atmos. Res. 122, 544–554. https://doi.org/10.1016/j.atmosres.2012.02.018

Foyo-Moreno, I., Alados, I., Guerrero-Rascado, J.L., Lyamani, H., Pérez-Ramírez, D., Olmo, F.J., Alados-Arboledas, L. (2019). Contribution to column-integrated aerosol typing based on Sun-photometry using different criteria. Atmos. Res. 224, 1–17. https://doi.org/10.1016/j.atmosres.2019.03.007

Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Müller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G., Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., Seefeldner, M. (2009). Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B 61, 165–179. https://doi.org/10.1111/j.1600-0889.2008.00396.x

García, O.E., Díaz, J.P., Expósito, F.J., Díaz, A.M., Dubovik, O., Derimian, Y., Dubuisson, P., Roger, J.C. (2012). Shortwave radiative forcing and efficiency of key aerosol types using AERONET data. Atmos. Chem. Phys. 12, 5129–5145. https://doi.org/10.5194/acp-12-5129-2012

García, O.E., Díaz, A.M., Expósito, F.J., Díaz, J.P., Dubovik, O., Dubuisson, P., Roger, J.C., Eck, T.F., Sinyuk, A., Derimian, Y. (2008). Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements. J. Geophys. Res. 113, 6089–6098. https://doi.org/10.1029/2008JD010211

Gong, S.L., Zhang, X.Y., Zhao, T.L., Mckendry, I.G., Jaffe, D.A., Lu, N.M. (2003). Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J. Geophys. Res. 108, 4262. https://doi.org/10.1029/2002JD002633

Gui, K., Che, H., Chen, Q., Zeng, Z., Zheng, Y., Long, Q., Sun, T., Liu, X., Wang, Y., Liao, T., Yu, J., Wang, H., Zhang, X. (2017). Water vapor variation and the effect of aerosols in China. Atmos. Environ. 165, 322–335. https://doi.org/10.1016/j.atmosenv.2017.07.005

Gui, K., Che, H., Wang, Y., Wang, H., Zhang, L., Zhao, H., Zheng, Y., Sun, T., Zhang, X. (2019). Satellite-derived PM2.5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters. Environ. Pollut. 247, 1125–1133. https://doi.org/10.1016/j.envpol.2019.01.056

Hennigan, C.J., Bergin, M.H., Dibb, J.E., Weber, R.J. (2008). Enhanced secondary organic aerosol formation due to water uptake by fine particles. Geophys. Res. Lett. 35, 102–102. https://doi.org/10.1029/2008GL035046

Hess, M., Koepke, P., Schult, I. (1998). Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 79, 831–844. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2

Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A. (1998). AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 66, 1–16. https://doi.org/10.1016/S0034-4257(98)00031-5

Holben, B.N., Tanre, D., Smirnov, A., Eck, T.F., Slutsker, I., Abuhassan, N., Newcomb, W.W., Schafer, J.S., Chatenet, B., Lavenu, F. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. 106, 12067–12097. https://doi.org/10.1029/2001JD900014

Huebert, B.J., Bates, T., Russell, P.B., Shi, G., Kim, Y.J., Kawamura, K., Carmichael, G., Nakajima, T. (2003). An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res. 108, 8633. https://doi.org/10.1029/2003JD003550

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Khan, R., Kumar, K.R., Zhao, T. (2019). The climatology of aerosol optical thickness and radiative effects in Southeast Asia from 18-years of ground-based observations. Environ. Pollut. 254, 113025. https://doi.org/10.1016/j.envpol.2019.113025

Kim, J., Lee, J., Lee, H.C., Higurashi, A., Takemura, T., Song, C.H. (2007). Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia Regional Experiment campaign. J. Geophys. Res. 112, D22S33. https://doi.org/10.1029/2006JD008201

Kusumaningtyas, S.D.A. (2019). Aerosol optical depth (AOD) over four Indonesian cities from the AERONET measurement: An overview. JSTMC 20, 47–57. https://doi.org/10.29122/jstmc.v20i2.3894

Lee, J., Kim, J., Song, C.H., Kim, S.B., Chun, Y., Sohn, B.J., Holben, B.N. (2010). Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ. 44, 3110–3117. https://doi.org/10.1016/j.atmosenv.2010.05.035

Li, S., Wang, T., Xie, M., Han, Y., Zhuang, B. (2015). Observed aerosol optical depth and angstrom exponent in urban area of Nanjing, China. Atmos. Environ. 123, 350–356. https://doi.org/10.1016/j.atmosenv.2015.02.048

Liu, H., Pinker, R.T., Holben, B.N. (2005). A global view of aerosols from merged transport models, satellite, and ground observations. J. Geophys. Res. 110, D10S15. https://doi.org/10.1029/2004JD004695

Lolli, S., Khor, W.Y., Matjafri, M.Z., Lim, H.S. (2019). Monsoon season quantitative assessment of biomass burning clear-sky aerosol radiative effect at surface by ground-based lidar observations in Pulau Pinang, Malaysia in 2014. Remote Sensing. 11, 2660. https://doi.org/10.3390/rs11222660

Ma, Y., Xin, J., Ma, Y., Kong, L., Zhang, K., Zhang, W., Wang, Y., Wang, X., Zhu, Y. (2017). Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest China. Adv. Atmos. Sci. 34, 1017–1026. https://doi.org/10.1007/s00376-016-6224-6

Mamouri, R.E., Ansmann, A. (2017). Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles. Atmos. Meas. Tech. 10, 3403–3427. https://doi.org/10.5194/amt-10-3403-2017

Mielonen, T., Arola, A., Komppula, M., Kukkonen, J., Koskinen, J., Leeuw, G.D., Lehtinen, K.E.J. (2009). Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data. Geophys. Res. Lett. 36, 252–260. https://doi.org/10.1029/2009GL039609

Noh, Y., Müller, D., Lee, K., Kim, K., Lee, K., Shimizu, A., Sano, I., Park, C.B. (2017). Depolarization ratios retrieved by AERONET sun–sky radiometer data and comparison to depolarization ratios measured with lidar. Atmos. Chem. Phys. 17, 6271–6290. https://doi.org/10.5194/acp-17-6271-2017

Pandithurai, G., Dipu, S., Dani, K.K., Tiwari, S., Bisht, D.S., Devara, P.C.S., Pinker, R.T. (2008). Aerosol radiative forcing during dust events over New Delhi, India. J. Geophys. Res. 113, D13209. https://doi.org/10.1029/2008JD009804

Ramanathan, V., Ramana, M.V. (2005). Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl. Geophys. 162, 1609–1626. https://doi.org/10.1007/s00024-005-2685-8

Rupakheti, D., Adhikary, B., Kang, S., Mahata, K., Naja, M., Zhang, Q., Panday, A., Lawrence, M. (2017). Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills. Atmos. Chem. Phys. 17, 1–46. https://doi.org/10.5194/acp-2016-430

Rupakheti, D., Kang, S., Rupakheti, M., Cong, Z., Panday, A.K., Holben, B.N. (2019). Identification of absorbing aerosol types at a site in the northern edge of Indo- Gangetic Plain and a polluted valley in the foothills of the central Himalayas. Atmos. Res. 223, 15–23. https://doi.org/10.1016/j.atmosres.2019.03.003

Russell, P.B., Bergstrom, R.W., Shinozuka, Y., Clarke, A.D., DeCarlo, P.F., Jimenez, J.L., Livingston, J.M., Redemann, J., Dubovik, O., Strawa, A. (2010). Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 10, 1155–1169. https://doi.org/10.5194/acp-10-1155-2010

Salinas, S.V., Chew, B.N., Liew, S.C. (2009). Retrievals of aerosol optical depth and Ångström exponent from ground-based Sun-photometer data of Singapore. Appl. Opt. 48, 1473–1484. https://doi.org/10.1364/AO.48.001473

Satheesh, S.K., Krishna Moorthy, K. (2005). Radiative effects of natural aerosols: A review. Atmos. Environ. 39, 2089–2110. https://doi.org/10.1016/j.atmosenv.2004.12.029

Schuster, G.L., Dubovik, O., Holben, B.N. (2006). Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. 111, D07207. https://doi.org/10.1029/2005JD006328

Semenov, V.K., Smirnov, A., Aref'ev, V.N., Sinyakov, V.P., Sorokina, L.I., Ignatova, N.I. (2005). Aerosol optical depth over the mountainous region in central Asia (Issyk-Kul Lake, Kyrgyzstan). Geophys. Res. Lett. 32, L05807. https://doi.org/10.1029/2004GL021746

Sheng, Z., Che, H., Chen, Q., Xia, X.A., Liu, D., Wang, Z., Zhao, H., Gui, K., Zheng, Y., Sun, T., Li, X., Liu, C., Wang, H., Wang, Y., Zhang, X. (2019). Aerosol vertical distribution and optical properties of different pollution events in Beijing in autumn 2017. Atmos. Res. 215, 193–207. https://doi.org/10.1016/j.atmosres.2018.08.029

Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N., Aoki, K., Uchiyama, A., Yamazaki, A. (2004). Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res. 109, D19S17. https://doi.org/10.1029/2002JD003253

Shin, S.K., Müller, D., Lee, C., Lee, K.H., Shin, D., Kim, Y.J., Noh, Y.M. (2015). Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia. Atmos. Chem. Phys. 15, 6707–6720. https://doi.org/10.5194/acpd-15-3381-2015

Shin, S.K., Tesche, M., Kim, K., Kezoudi, M., Tatarov, B., Müller, D., Noh, Y. (2018). On the spectral depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product. Atmos. Chem. Phys. 18, 12735–12746. https://doi.org/10.5194/acp-2018-401

Shin, S.K., Tesche, M., Noh, Y., Müller, D. (2019). Aerosol-type classification based on AERONET version 3 inversion products. Atmos. Meas. Tech. 12, 3789–3803. https://doi.org/10.5194/amt-12-3789-2019

Smirnov, A., Holben, B., Eck, T., Dubovik, O., Slutsker, I. (2000). Cloud screening and Quality Control Algorithms for the AERONET database. 73, 337–349. https://doi.org/10.1016/S0034-4257(00)00109-7

Sun, T., Che, H., Qi, B., Wang, Y., Dong, Y., Xia, X., Wang, H., Gui, K., Zheng, Y., Zhao, H., Ma, Q., Du, R., Zhang, X. (2019). Characterization of vertical distribution and radiative forcing of ambient aerosol over the Yangtze River Delta during 2013-2015. Sci. Total Environ. 650, 1846–1857. https://doi.org/10.1016/j.scitotenv.2018.09.262

Tan, F., San Lim, H., Abdullah, K., Yoon, T.L., Holben, B. (2015). AERONET data-based determination of aerosol types. Atmo. Pollut. Res. 6, 682–695. https://doi.org/10.5094/APR.2015.077

Tesche, M., Müller, D., Gross, S., Ansmann, A., Althausen, D., Freudenthaler, V., Weinzierl, B., Veira, A., Petzold, A. (2011). Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements. Tellus 63, 677–694. https://doi.org/10.1111/j.1600-0889.2011.00549.x

Toledano, C., Cachorro, V.E., Berjon, A., de Frutos, A.M., Sorribas, M., de la Morena, B.A., Goloub, P. (2007). Aerosol optical depth and Ångström exponent climatology at el Arenosillo AERONET site (Huelva, Spain). Q. J. R. Meteorolog. Soc. 133, 795–807. https://doi.org/10.1002/qj.54

Wan, X., Kang, S., Li, Q., Rupakheti, D., Zhang, Q., Guo, J., Chen, P., Tripathee, L., Rupakheti, M., Panday, A.K. (2017). Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning. Atmos. Chem. Phys. 17, 8867–8885. https://doi.org/10.5194/acp-17-8867-2017

Wang, Z., Liu, D., Wang, Z., Wang, Y., Khatri, P., Zhou, J., Takamura, T., Shi, G.J. (2014). Seasonal characteristics of aerosol optical properties at the SKYNET Hefei site (31.90°N, 117.17°E) from 2007 to 2013. J. Geophys. Res. 119, 6128–6139. https://doi.org/10.1002/2014JD021500

Xia, X., Chen, H., Goloub, P., Zhang, W., Chatenet, B., Wang, P. (2007a). A compilation of aerosol optical properties and calculation of direct radiative forcing over an urban region in northern China. J. Geophys. Res. 112, D12203. https://doi.org/10.1029/2006JD008119

Xia, X., Li, Z., Holben, B., Wang, P., Eck, T., Chen, H., Cribb, M., Zhao, Y. (2007b). Aerosol optical properties and radiative effects in the Yangtze Delta region of China. J. Geophys. Res. 112, D22S12. https://doi.org/10.1029/2007jd008859

Xin, J., Gong, C., Wang, S., Wang, Y. (2016). Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China. Atmos. Res. 171, 5665. https://doi.org/10.1016/j.atmosres.2015.12.004

Yan, N., Wu, G., Zhang, X., Zhang, C., Xu, T., Lazhu (2015). Variation of aerosol optical properties from AERONET observation at Mt. Muztagh Ata, Eastern Pamirs. Atmos. Res. 153, 480–488. https://doi.org/10.1016/j.atmosres.2014.10.013

Yoon, S.C., Won, J.G., Omar, A.H., Kim, S.W., Sohn, B.J. (2005). Estimation of the radiative forcing by key aerosol types in worldwide locations using a column model and AERONET data. Atmos. Environ. 39, 6620–6630. https://doi.org/10.1016/j.atmosenv.2005.07.058

Yu, X., Rui, L., Kumar, K.R., Ma, J., Zhang, Q., Jiang, Y., Kang, N., Yang, S., Wang, J., Li, M. (2016). Dust aerosol properties and radiative forcing observed in spring during 2001-2014 over urban Beijing, China. Environ. Sci. Pollut. Res. Int. 23, 15432–15442. https://doi.org/10.1007/s11356-016-6727-9

Zhang, L., Sun, J.Y., Shen, X.J., Zhang, Y.M., Che, H., Ma, Q.L., Zhang, Y.W., Zhang, X.Y., Ogren, J.A. (2015). Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China. Atmos. Chem. Phys. 15, 8439–8454. https://doi.org/10.5194/acp-15-8439-2015

Zhang, X.Y., Arimoto, R., Zhu, G.H., Chen, T., Zhang, G.Y. (1998). Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus B 50, 317–330. https://doi.org/10.3402/tellusb.v50i4.16131

Zhang, X.Y., Wang, Y.Q., Niu, T., Zhang, X.C., Gong, S.L., Zhang, Y.M., Sun, J.Y. (2012). Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 12, 779–799. https://doi.org/10.5194/acp-12-779-2012

Zhao, H., Che, H., Ma, Y., Xia, X., Wang, Y., Wang, P., Wu, X. (2015). Temporal variability of the visibility, particulate matter mass concentration and aerosol optical properties over an urban site in Northeast China. Atmos. Res. 166, 204–212. https://doi.org/10.1016/j.atmosres.2015.07.003

Zheng, C., Zhao, C., Zhu, Y., Wang, Y., Shi, X., Wu, X., Chen, T., Wu, F., Qiu, Y. (2017). Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmos. Chem. Phys. 17, 13473–13489. https://doi.org/10.5194/acp-2016-1170

Zhu, J., Che, H., Xia, X., Chen, H., Goloub, P., Zhang, W. (2014). Column-integrated aerosol optical and physical properties at a regional background atmosphere in North China Plain. Atmos. Environ. 84, 54–64. https://doi.org/10.1016/j.atmosenv.2013.11.019

Zhu, J., Xia, X., Che, H., Wang, J., Cong, Z., Zhao, T., Kang, S., Zhang, X., Yu, X., Zhang, Y. (2019). Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmos. Chem. Phys. 19, 14637–14656. https://doi.org/10.5194/acp-19-14637-2019


Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.