Chenxing Pei1‡, Qisheng Ou1‡, Seong Chan Kim1, Sheng-Chieh Chen2, David Y.H. Pui This email address is being protected from spambots. You need JavaScript enabled to view it.1,3

1 Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
2 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
3 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China

‡ Equal contribution.


Received: July 20, 2020
Revised: August 28, 2020
Accepted: August 28, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

  • Download: PDF

Cite this article:

Pei, C., Ou, Q., Kim, S.C., Chen, S.C. and Pui, D.Y.H. (2020). Alternative Face Masks Made of Common Materials for General Public: Fractional Filtration Efficiency and Breathability Perspective. Aerosol Air Qual. Res.


  • Common materials were tested to screen better DIY mask candidates.
  • Filter media with electrostatic charges is recommended due to high figure of merit.
  • multiple-layer household fabrics and sterilization wraps are acceptable materials.
  • The outcome of this study can also suggest protections during air pollution episodes.


As COVID-19 pandemic has caused more than 24 million confirmed cases globally (as of August 28th, 2020), it is critical to slow down the spreading of SARS-CoV-2 to protect the healthcare system from overload. Wearing a respirator or a mask has been proven as an effective method to protect both the wearer and others, but commercially available respirators and masks should be reserved for healthcare workers under a currently desperate shortage. The use of alternative materials becomes an option for the general public to make the do-it-yourself (DIY) masks, with their efficacy seldom reported. In this study, we tested commercial respirators and masks, furnace filters, vacuum cleaner filters, and common household materials. We evaluated the materials’ fractional filtration efficiency and breathing resistance, which are primary factors affecting respiratory protection. To compare the efficiency-resistance tradeoff, the figure of merit of each tested common material was also calculated. Filter media with electrostatic charges (electret) is recommended due to its high efficiency with low flow resistance; multiple-layer household fabrics and sterilization wraps are acceptable materials; a coffee filter is inadvisable due to its low efficiency. The outcome of this study can not only offer guidance for the general public under the current pandemic but also suggest the appropriate alternative respiratory protection materials under heavy air pollution episodes.

Keywords: Respirator; Mask; Common material; Fractional efficiency; Breathability.

Aerosol Air Qual. Res. 20 :-.  

Don't forget to share this article 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.