Supplementary Appendix

A letter to reconsider the conditions for testing decontaminated N95 respirators for emergency reuse to address shortage

Eric P. Vejerano* and Jeonghyeon Ahn

Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina,

921 Assembly St., PHRC 401D, Columbia, South Carolina, 29208

Equations used in calculating efficiency as a function of face velocity

Note: We considered ambient conditions during calculations.

We calculated the single-fiber efficiency, E_Σ, by summing the individual efficiencies from diffusion, E_D, interception, E_R, and inertial impaction, E_I:

$$E_\Sigma = E_D + E_R + E_I \quad (\text{Eq. 1})$$

$$E_T = 1 - e\left(-\frac{4E_\Sigma \alpha L}{\pi d_f}\right) \quad (\text{Eq. 2})$$

where E_T is the total efficiency of a filter composed of many fibers in a mat, α is the solidity or packing density of the filter, L is the filter thickness, and d_f is a fiber of diameter.

$$Pe = \frac{d_f U}{D} \quad (\text{Eq. 3})$$

where Pe is the Péclet number, U is the face velocity at the filter surface, and D is the diffusion coefficient of the particle.

$$D = \frac{kT c_e}{3 \pi \eta d_p} \quad (\text{Eq. 4})$$

* Corresponding author. Tel: 1-803-777-6360

E-mail address: vejerano@mailbox.sc.edu
in which \(k \) is the Boltzmann constant, \(T \) is the absolute temperature, \(\eta \) is the air viscosity, \(d_p \) is the particle diameter, and \(C_c \) is the Cunningham slip correction.

\[
C_c = 1 + \frac{\lambda}{d_p} \left[2.33 + 0.966e^{-0.499\frac{d_p}{\lambda}} \right] \quad \text{(Eq. 5)}
\]

where \(\lambda \) is the mean free path of the gas molecules.

\[
E_D = 2.9 \, Ku^{-1/3} \, Pe^{-2/3} \quad \text{(Eq. 6)}
\]

\(Ku \) is the hydrodynamic factor, or Kuwabara number:

\[
Ku = -0.5\ln\alpha - 0.75 + \alpha - 0.25\alpha \quad \text{(Eq. 7)}
\]

\[
E_R = \frac{1+R}{2Ku} \left[2\ln(1+R) - 1 + \alpha + \left(\frac{1}{1+R} \right)^2 \times \left(1 - \frac{\alpha}{2} \right) - \frac{\alpha}{2} (1+R)^2 \right] \quad \text{(Eq. 8)}
\]

in which \(R \) is the interception effect:

\[
R = \frac{d_p}{d_f} \quad \text{(Eq. 9)}
\]

The dimensionless Stokes number, \(Stk \), is:

\[
Stk = \frac{\rho_p d_p^2 C_c U}{18 \eta d_f} \quad \text{(Eq. 10)}
\]

where \(\rho_p \) is the density of the particle.

\[
E_I = \frac{Stk}{(2\,Ku)^2} [(29.6 - 28\alpha^{0.62})R^2 - 27.5R^{2.8}] \quad \text{(Eq. 11)}
\]