Special Issue on COVID-19 Aerosol Drivers, Impacts and Mitigation (VII)

Tse-Lun Chen1, Yi-Hung Chen2, Yu-Lin Zhao3Pen-Chi Chiang This email address is being protected from spambots. You need JavaScript enabled to view it.1

1 Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan
2 Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
3 Department of Mechanical Engineering, National Taiwan University, Taipei 10673, Taiwan


Received: June 20, 2020
Revised: September 4, 2020
Accepted: September 5, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.4209/aaqr.2020.06.0330  

  • Download: PDF

Cite this article:

Chen, T.L., Chen, Y.H., Zhao, Y.L. and Chiang, P.C. (2020). Application of Gaseous ClO2 on Disinfection and Air Pollution Control: A Mini Review. Aerosol Air Qual. Res. 20: 2289–2298. https://doi.org/10.4209/aaqr.2020.06.0330


  • Chemical principles of gaseous ClO2 production was reviewed.
  • Case studies of using gaseous ClO2 in hospitals and food industries were discussed.
  • Process chemistry and applications of ClO2 gas works as an oxidizer were provided.


During the sever pandemic of coronavirus, the development and deployment of efficient disinfection technology have attracted hospitals’ attention. Chlorine dioxide (ClO2) gas has been validated as an efficient disinfector and air pollution control due its high oxidation ability. This article reviewed the principles and application of ClO2 gas on disinfection, sterilization and air pollutants abatement. The principles of ClO2 gas production, chemistry and related generator issues were discussed. We also review some case studies of the application of ClO2 gas in the medical field and food industry as a sterilizer. Oxidation of nitrogen oxide (NOx), sulfur oxide (SOx), mercury (Hg), and volatile organic compounds (VOCs) using ClO2 gas has been investigated. The process chemistry and demonstration of applying ClO2 gas for air pollutants oxidation and absorption have also been provided. In conclusion, we suggest the future priority research direction of ClO2 gas application are included the development of smart and robust ClO2 gas release system, the integration of an innovative robotic technology in ClO2 sterilization for epidemic prevention, and the evaluation of ClO2 emissions impact on indoor air quality in hospitals.

Keywords: ClO2; Disinfection; Sterilization; Oxidation; COVID-19.

Don't forget to share this article 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

SCImago Journal & Country Rank

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.