Harry Alvarez-Ospina1This email address is being protected from spambots. You need JavaScript enabled to view it., Sofia Giordano1, Luis A. Ladino2, Graciela B. Raga2, Joshua I. Muñoz-Salazar1,2, Martha Leyte-Lugo3, Daniel Rosas4, Giovanni Carabali5 1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
2 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
3 Catedrática CONACYT Comisionada a la Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
4 Facultad de Química, Universidad Autónoma de Yucatán, Mérida, México
5 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, México
Received:
June 3, 2020
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
Revised:
December 10, 2020
Accepted:
December 21, 2020
Download Citation:
||https://doi.org/10.4209/aaqr.200245
Alvarez-Ospina, H., Giordano, S., Ladino, L.A., Raga, G.B., Muñoz-Salazar, J.I., Leyte-Lugo, M., Rosas, D., Carabali, G. (2021). Particle-bound Polycyclic Aromatic Hydrocarbons (pPAHs) in Merida, Mexico. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr.200245
Cite this article:
This study focuses on the air quality evaluation of Merida, a medium-size city located in the Yucatan Peninsula with a significant population growth in recent years. Particle-bound Polycyclic Aromatic Hydrocarbons (pPAHs) were quantified with a real time sensor during a six-month period during the dry season (October 2017 to March 2018). The pPAHs diurnal and monthly characteristics, as well as their potential sources were determined. The total pPAHs concentrations ranged from 7 ng m-3 to 170 ng m-3, with an average value of 19 ± 11 ng m-3. A seasonal trend was observed, albeit not complete, indicating that pPAHs concentrations were higher during the colder months (October through January) than in February and March. The diurnal cycle showed a bimodal behavior similar to those found for carbon monoxide (CO), nitrogen oxides (NOx) and black carbon (BC) (estimated from absorption coefficient), indicating that burning of fossil fuels from vehicular traffic is the likely source of the pPAHs emitted in Merida. Moreover, atypical nocturnal values were observed, where the high pPAHs concentration could be associated with burning of solid waste. The average pPAHs concentration obtained in this study (19 ± 11 ng m-3) were found to be lower than the values measured in two other sites in Mexico City (32 ng m-3 and 50 ng m-3), Boston (29 ng m-3), Los Angeles (88.3 ng m-3) and Quito (220 ng m-3).HIGHLIGHTS
ABSTRACT
Keywords:
Air pollution, Aerosol particles, Polycyclic aromatic hydrocarbons, Photoelectric aerosol sensor