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ABSTRACT 

 
This study aims to evaluate the variability in ambient fine particulate matter (PM2.5) 

concentrations obtained from the federal equivalent method (FEM) and federal reference 
method (FRM)-like measurements at the national air quality monitoring stations (AQMSs) for 
exposure estimates and to examine the effect of environmental factors and sampling site 
characteristics affecting the spatial and temporal variations in PM2.5 concentrations. A mixed-
effects model was used to evaluate the temporal and spatial variability in daily and annual PM2.5 
concentrations during 2014–2017 at 16 AQMSs in the Big Taipei City, Taiwan. The mean FEM 
PM2.5 concentrations were ~30% higher than the FRM-like PM2.5 concentrations. The FRM-like 
PM2.5 concentrations obtained by applying the calibration procedures presented a negligible 
between-site variability. The daily FEM PM2.5 concentrations were dominated by the within-site 
variability (~90%), whereas the annual concentrations were reasonably attributable to the 
between-site variability (47.8%). Ambient PM2.5 was mainly affected by the gaseous pollutants 
(such as NO2, O3, and SO2), accounting for 45.8% and 26.8% of the within-site and between-site 
variability in concentrations, respectively. The FEM measurements rather than the FRM-like 
measurements at the AQMSs could provide a higher between-site variability for exposure 
estimates of PM2.5 in the epidemiological studies. 
 
Keywords: Ambient PM2.5, Calibration, Within and between variability, Exposure estimates 
 

1 INTRODUCTION 
 

The elevated levels of fine particulate matter (PM2.5) are associated with adverse health 
effects, such as respiratory and cardiovascular morbidity and mortality, which have been 
reported in many studies (Beelen et al., 2014; Cai et al., 2016; Kaufman et al., 2016). The World 
Health Organization (WHO, 2014) has indicated that outdoor PM2.5 accounts for 7 million deaths 
worldwide every year. Recent literature has documented that exposure to even low levels of 
PM2.5 can significantly increase all-cause mortality (Shi et al., 2016). National ambient air quality 
standards (NAAQS) are usually regulated in many countries to limit air pollution (such as ambient 
PM2.5 levels) and protect public health. For instance, the annual (15 µg m–3) and daily (35 µg m–3) 
standards of PM2.5 have been set by Taiwan EPA while lower guideline limits for outdoor PM2.5 
(annual = 10 µg m–3, daily = 25 µg m–3) have been suggested by WHO. The filter-based instruments 
such as BGI PQ200 and RAAS2.5 single and multi-day samplers are usually used for consistent  
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and repeatable measurements of 24-h PM2.5 concentrations following the federal reference 
method (FRM) certified by USEPA (McNamara et al., 2011; Kelly et al., 2017). In addition, the 
continuous monitoring measurements following the federal equivalent method (FEM) or non-
FRM based on optical, beta ray attenuation, or tapered element oscillation microbalance (TEOM) 
monitoring have also been widely used for timely PM2.5 measurements in the metropolitan area. 
In Taiwan, hourly concentrations of FEM PM2.5 from 76 air quality monitoring stations (AQMSs) 
of Taiwan EPA (https://data.epa.gov.tw/dataset/aqx_p_15) have been announced since 2006. 
FEM PM2.5 concentrations obtained via optical measurements are usually affected by humidity, 
temperature, size distribution, and chemical composition (Bortnick et al., 2002; Dinoi et al., 2017; 
Sofowote et al., 2014). Thus, the calibration of the FEM PM2.5 data with the FRM PM2.5 measurements 
through a statistical linear regression model (so-called FRM-like PM2.5) is necessary. Bortnick et 
al. (2002) indicated that the resulting FRM-like PM2.5 measurements using a linear regression 
model were able to provide more timely reporting of PM2.5. The calibration approach of the data 
quality objective (DQO) process consists of a seven-step strategy, as suggested by U.S. EPA (U.S. 
EPA, 1994). 

The FRM-like measurements of PM2.5 are performed to not only provide a comprehensive 
assessment of air quality for the public but also to investigate its impact on human health. 
Numerous population-based epidemiological studies of air pollution usually rely on FRM-like PM2.5 
measurements either by direct methods or using geographical modeling, i.e., microenvironmental 
exposure, land use regression (LUR), and kriging models to estimate PM2.5 exposure (Koenig et 
al., 2005; Meng et al., 2005; Laden et al., 2006; Krewski et al., 2009; Jerrett et al., 2013; Özkaynak 
et al., 2013; Kioumourtzoglou et al., 2014). However, it is not clear whether the PM2.5 estimates 
from FRM-like measurements through a calibration process attenuate exposure variability or 
lead to non-differential misclassification of exposure for population-based health studies. For 
instance, a model could result in misleading PM2.5 concentrations, when it is mainly affected by 
meteorological conditions such as temperature (Bortnick et al., 2002). The exposure error obtained 
from ambient PM2.5 measurements can impact observed health risks, potentially distorting 
associations and interactions between covariates and outcomes, and leading to invalid 
inferences. To date, no study has explored the applicability of uncalibrated FEM and calibrated 
FRM-like measurements of PM2.5 for exposure estimates in health effect studies. On the other 
hand, a large number of studies have examined the effect of meteorological conditions and 
gaseous pollutants on PM2.5 concentrations (Ito et al., 2007; Zhang et al., 2015). These potential 
confounders, such as temperature, NO2, and O3, are usually included for adjustment in the health 
effect models (Crouse et al., 2015; Luo et al., 2016). Thus, it is important to understand the 
magnitude of the impact of these factors on within- and between-site (or -group) variability in 
concentrations at different time intervals. This information is vital for the future design of studies 
to improve exposure estimates associated with mortality and morbidity outcomes. 

This study aims to evaluate PM2.5 variability in FRM-like and FEM measurements and identify 
the important factors affecting within- and between-site (-group) variability in PM2.5 concentrations 
in the metropolitan area. This study, a part of the Taiwan Health and Air Pollution study (THAP), 
can make an effort on the improvement of exposure estimates for population-based health risk 
analysis. 
 

2 METHODS 
 
2.1 Data Sources and Calibration Process 

In this study, we selected Taipei and New Taipei cities, (together known as Big Taipei City), 
having a population of 7 million in 2,225 km2 of land, as our study area because it has a high-
density of national AQMSs. There are 19 national AQMSs (Fig. 1), including one national park 
AQMS (Yangming mountain), three traffic AQMS (Sanchong, Yonghe, and Datong), one background 
AQMS (FugueiCape), and 14 general AQMSs (Tu-cheng (TC), Shi-lin (SL), Zhong-shan (ZS), Gu-ting 
(GT), Xi-zhi (XiZ), Song-shan (SS), Ban-qiao (BQ), Lin-kou (LK), Tam-sui (TS), Cai-liao (CL), Xin-dian 
(XD), Xin-zhuang (XinZ), Wanli (WL), and Wan-hua (WH)). Out of these 14 general stations, one is 
the background station (WL) for the specific purpose of air quality monitoring. After excluding 
national park and background monitoring stations, the air quality monitoring data from a total of  
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Fig. 1. The location of AQMSs in Taipei and New Taipei Cities (SC (San-chong); TC (Tu-cheng); SL (Shi-lin); DT (Da-tong); ZS (Zhong-
shan); GT (Gu-ting); YH (Yong-he); XiZ (Xi-zhi); SS (Song-shan); BQ (Ban-qiao); LK (Lin-kou); TS (Tam-sui); CL (Cai-liao); XD (Xin-
dian); XinZ (Xin-zhuang); WH (Wan-hua); WL (Wanli); YM (Yaming Nantional Park); FC (FugueiCape)). 

 
13 general stations (except WL), and 3 traffic stations in Big Taipei City along with the 
meteorological observations and site specifications were included for analysis.  

Briefly, the FRM calibration procedure has been implemented by the contractors of Taiwan 
EPA across Taiwan since 2014. Due to limited resources, filter-based FRM measurements at only 
5 AQMSs in big Taipei were conducted once every three days. In the analysis, 16 AQMSs shared 
five FRM measurements of PM2.5 simultaneously. As a result, 16 resultant calibration equations 
by the station were generated for every year (Tables S1–S4).  

The regression model for the calibration of FRM-like PM2.5 measurements from 2014 to 2017 
in Big Taipei City is shown in the supplementary data. The measurement data, including ambient 
temperature, relative humidity, wind speed, rainfall, CO, NO, NO2, NOx, O3, SO2, CH4, Non-
methane hydrocarbon (NMHC), and total hydrocarbon (THC), were obtained from the Taiwan Air 
Quality Monitoring Network database for 16 stations. Station profiles such as the station types 
(ambient/traffic), the height of sampling ports (3.5–13.5 m/17.5 m/19.5–21.5 m), the distance to 
the nearest main road (1–5.6 m/10–15 m/20–100 m), the types of automatic sampling instruments 
(VEREWA F701/MetOne 1020) were also collected. Moreover, we incorporated the concurrent 
atmospheric pressure measurements obtained from the weather bureau stations selected based 
on the distance to the nearest AQMS. As a lot of meteorological information from AQMSs was 
missing, all the missing data were imputed by the concurrent measurements from the nearest 
weather bureau station. 

 
2.2 Statistical Analysis 

The SPSS software was used to evaluate temporal (within-site) and spatial (between-site) 
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variability in PM2.5 concentrations from FEM and FRM-like measurements at 16 stations. The 
temporal variation of PM2.5 is defined as the variability in PM2.5 over time at each AQMS, whereas 
the spatial variation is defined as the variability in PM2.5 across sites at any time. Both FEM and 
FRM-like PM2.5 concentrations had skewed distribution and were normalized by logarithmic 
transformation. The measurements at daily and yearly time resolutions were evaluated to 
explore the trends in spatial and temporal variations at short-term and long-term scales. 

Pearson’s correlation coefficient (r) was used to evaluate the correlations between the variables. 
Among the variable pairs having r > 0.7, only the determinants considered more logically related 
to PM2.5 and/or more consistently and reliably available throughout the duration of the study 
across selected AQMSs were retained for modeling. The mixed-effects model based on a restricted 
maximum likelihood estimation procedure was used to examine the relationship between each 
variable and the log-transformed daily and annual PM2.5. The determinants were treated as fixed 
effects in the model. The AQMSs were treated as random effects to account for potential 
correlation within repeated measurements at the same AQMS. For PM2.5, the mixed-effects 
model was specified as (Peretz et al., 2002): 

 
Yij = β0 + β1Xij1 + … + βpXijp + b1z1 + …. + bkzk + εij (1) 
 

For i = 1, …, k (AQMSs) and j = 1, …, ni (the repeated day or year of the ith AQMS), where Yij is 
the log-transformed PM2.5 concentration; β0 is an overall intercept for the study area that 
corresponds to mean background PM2.5 (log-transformed) when all factors equal zero; β1, …, βp 
are fixed effects; Xij1, …, Xijp are values of the variables for the ith AQMS on the jth day or year; b1, 
…, bk are AQMSs’ random effects; bi is the ith AQMS random effect, which corresponds to the 
discrepancy between its intercept and the group intercept β0; and z1, …, zk are AQMSs’ indicators. 
εij is the residual error associated with ith AQMS on the jth day or year. bi and εij were assumed to 
be independent and normally distributed, with a mean of 0, and the variances of σ2

B (between-
site) and σ2

w (within-site), respectively. 
Exponential beta [exp(β)] value of determinants strengthens the correlation of variables with 

PM2.5 in the model. The statistical significance was set at p < 0.05 based on a two-tailed analysis. 
We created univariate and multivariate models to evaluate the selective variables statistically 
affecting PM2.5. The fitness of each mixed-effects model with selected variables was estimated 
by the Akaike information criterion (AIC). A lower AIC indicates a better model fit. 
 

3 RESULTS AND DISCUSSION 
 
3.1 PM2.5 Concentrations from the Calibrated and Uncalibrated 
Measurements 

Table 1 shows the descriptive statistics of PM2.5 concentrations from the FRM-like (calibrated) 
and FEM (uncalibrated) measurements in the Big Taipei City at 16 AQMSs during 2014–2017. The 
annual mean concentrations of FRM-like PM2.5 were 21.5, 18.5, 17.5, and 16.6 µg m–3 in 2014, 
2015, 2016, and 2017, respectively, with all the concentrations exceeding the annual standard 
(15.0 µg m–3) set by Taiwan EPA. In general, the mean PM2.5 concentrations from the FEM 
measurements were approximately 30% significantly (p < 0.001) higher than that from the FRM-
like measurements at all the stations during 2014–2017. The ZS and LK stations had the highest 
mean PM2.5 concentrations from the FEM and FRM-like measurements, respectively, throughout 
the duration of the study. The traffic stations, including SC, DT, and YH, did not show higher PM2.5 
concentrations compared with the concentrations observed at the ambient stations. As shown 
in Fig. S1, the annual mean concentrations of PM2.5 from both the FEM and FRM-like measurements 
significantly decreased by approximately 22% from 2014 to 2017 at all the AQMSs. The improvement 
in the air quality in terms of PM2.5 is likely attributed to several effective policies implemented by 
the Taiwan EPA and Environmental Protection Bureau of Taipei. Few of the policies implemented 
include eliminating two-stroke motorcycles and old-generation diesel vehicles, promoting 
electric buses and electric motorbikes, emission control measures for the catering industry, 
stricter standards for boiler emissions, and implementing low-sulfur jet fuel. As shown in Fig. S1, 
the PM2.5 concentrations at CL (31.9 µg m–3 in 2014 to 20.5 µg m–3 in 2017) from FEM measurements  
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Table 1. The descriptive statistics of PM2.5 concentrations (µg m–3) with calibrated and un-calibrated measures in Big Taipei city 
among 16 AQMS for 2014–2017. 

Station Station Type Measure n (day) Mean SD GM 25th 75th  Min Max 
San-chong (SC) Traffic FRM-like 1,456 18.6 10.5 15.8 11.1 23.9 0.92 83.5 

FEM 1,456 30.1 11.3 28.3 22.2 36.2 10.6 99.0 
Tu-cheng (TC) Ambient FRM-like 1,450 20.0 11.3 16.9 11.8 25.3 1.25 78.3 

FEM 1,450 24.7 12.7 21.8 15.9 30.4 3.29 88.6 
Shi-lin (SL) Ambient FRM-like 1,457 17.2 9.39 15.0 10.5 21.5 2.33 78.4 

FEM 1,457 23.2 10.6 21.2 15.7 27.9 6.00 92.4 
Da-tong (DT) Traffic FRM-like 1,458 16.7 9.48 14.3 9.95 21.3 2.33 67.2 

FEM 1,458 26.8 11.1 24.8 18.8 32.2 9.38 94.7 
Zhong-shan (ZS) Ambient FRM-like 1,453 18.4 9.76 16.1 11.5 23.0 1.33 88.6 

FEM 1,453 30.9 11.1 29.1 22.7 36.1 12.3 105 
Gu-ting (GT) Ambient FRM-like 1,445 17.6 10.1 15.0 10.8 22.2 1.43 79.7 

FEM 1,445 20.4 10.9 17.7 12.6 25.6 1.74 85.5 
Yong-he (YH) Traffic FRM-like 1,452 18.2 9.90 15.7 11.1 23.2 1.79 76.8 

FEM 1,452 22.2 10.9 19.7 14.3 27.6 2.88 89.8 
Xi-zhi (XiZ) Ambient FRM-like 1,450 18.8 9.75 16.2 12.0 24.0 1.00 77.0 

FEM 1,450 21.6 11.1 18.7 13.9 27.3 0.3 85.2 
Song-shan (SS) Ambient FRM-like 1,451 17.9 9.37 15.7 10.9 22.7 3.00 73.2 

FEM 1,451 24.1 10.2 22.1 16.3 29.3 7.29 85.0 
Ban-qiao (BQ) Ambient FRM-like 1,434 19.4 11.2 16.4 11.4 24.8 1.37 77.6 

FEM 1,434 22.7 13.0 19.2 13.5 29.1 0.79 89.1 
Lin-kou (LK) Ambient FRM-like 1,453 21.8 11.2 19.1 13.9 27.7 1.67 86.5 

FEM 1,453 24.7 11.9 22.1 16.4 30.8 3.21 90.2 
Tam-sui (TS) Ambient FRM-like 1,450 17.0 9.67 14.4 10.1 21.3 0.50 75.4 

FEM 1,450 22.1 10.9 19.6 14.6 27.2 2.38 89.3 
Cai-liao (CL) Ambient FRM-like 1,457 18.6 11.0 15.4 10.6 24.9 0.17 75.0 

FEM 1,457 24.8 12.9 21.6 15.5 32.0 2.25 87.6 
Xin-dian (XD) Ambient FRM-like 1,457 18.3 9.47 16.0 11.6 23.1 2.13 72.3 

FEM 1,457 17.9 10.4 15.0 10.6 23.0 0.83 79.8 
Xin-zhuang (XinZ) Ambient FRM-like 1,440 19.3 11.7 15.9 10.7 25.4 1.31 76.9 

FEM 1,440 25.0 13.1 21.4 15.6 32.0 2.69 85.3 
Wan-hua (WH) Ambient FRM-like 1,453 18.7 10.0 16.4 11.4 23.6 2.88 80.4 

FEM 1,453 23.4 10.2 21.5 16.0 28.3 6.63 86.8 
Overall - FRM-like 23,216 18.5 10.3 15.9 11.2 23.6 0.17 88.6 

FEM 23,216 24.0 11.9 21.2 15.7 30.1 0.30 105 

 
and at XinZ (23.3 µg m–3 in 2014 to 14.0 µg m–3 in 2017) from FRM-like measurements drastically 
reduced by 35–40% owing to the operation of Taipei mass rapid transit (MRT) for the Xinzhuang 
reduced by 35–40% owing to the operation of Taipei mass rapid transit (MRT) for the Xinzhuang 
line in 2014. In addition, the lowest decline in PM2.5 concentrations was observed at LK (12.5%) 
and XD (7%) from the FEM and FRM-like measurements, respectively. The FEM and FRM-like 
measurements presenting such a dissimilarity in the reduction of PM2.5 levels measured at the 
stations may mask information on the effectiveness of region-specific ambient air quality 
management. 

 
3.2 Variations in PM2.5 Concentrations from the FEM and FRM-like 
Measurements 

Table 2 shows σB
2, σW

2, and total variance (σTotal
2) of daily and annual FEM and FRM-like PM2.5 

concentrations at 16 AQMSs during 2014–2017. The daily FEM PM2.5 concentrations were 
dominated by the within-site variability (> 90% of σTotal

2) rather than the between-site variability. 
When the daily FRM-like data was analyzed in the null model (all factors of fixed effects equal 
zero), the between-site variability (σB

2 = 0.004; 1.29% of σTotal
2) in PM2.5 concentrations decreased  
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Table 2. The between- (σB
2) and within-site (σW

2) variability and total variance (σTotal
2) in PM2.5 concentrations for FEM and FRM-

like measures in daily and yearly time scales among 16 AQMS for 2014–2017. 

Time resolution Measure n σW
2 σB

2 σTotal
2 σW

2 (%) σB
2 (%) 

Daily FEM 23,214 0.245 0.027 0.272 90.2 9.84 
FRM-like 0.339 0.004 0.343 98.7 1.29 

Yearly FEM 64 0.016 0.014 0.030 52.3 47.8 
FRM-like 0.020 0 0.019 100 0 

 
by ~8% of total variance compared with FEM data (σB

2 = 0.027; 9.84% of σTotal
2) as shown in 

Table 2. The increase of σW
2 (=0.339; 98.7% of σTotal

2) in FRM-like PM2.5 could be also observed 
compared with that in FEM PM2.5 (σW

2 = 0.245; 90.2% of σTotal
2). 

While fitting such linear regression models, the calibration procedure limits the inherent 
variation in PM2.5 concentrations obtained from the AQMSs at various locations, which may 
reduce spatial variation in PM2.5 concentrations. Basically, the FRM measurements of PM2.5 at 
five AQMSs (SL, WH, XZ, BQ, and Taoyuan) were used to calibrate single or multiple FEM 
measurements at the corresponding AQMSs through linear regression models and coefficient of 
determination (R2, mean = 0.92, range = 0.83–0.97) during 2014–2017 (Tables S1–S4). For instance, 
the FRM measurement at one station (WH) was shared by the FEM measurements at a maximum 
of 8 AQMSs for calibration, where R2 ranged from 0.86 to 0.97 in 2014 (Table S1). When we 
compared daily variations in PM2.5 concentrations from the FRM and FEM measurements during 
2014–2017, σTotal

2 and coefficient of variation (CV) and σW
2 of PM2.5 concentrations from the FRM 

measurements were larger than those from the FEM measurements (Table S5). Hence, it can be 
stated that the calibration approach of FRM-like PM2.5 measurements directly decreases the 
spatial heterogeneity in PM2.5 concentrations across sites. 

For annual PM2.5, the within-site (σW
2 = 0.016) and between-site (σB

2 = 0.014) variance in the 
FEM measurements were similar. However, the between-site variance in the FRM-like measurements 
became negligible (σB

2 = 0%) after the calibration process. The within-site variation (σW
2 = 0.245, 

accounting for 90.2% of σTotal
2) in daily PM2.5 concentrations was much higher than that (σW

2 = 
0.016, accounting for 52.3% of σTotal

2) in annual PM2.5 concentrations, indicating the importance 
of temporal variation in PM2.5 concentrations for studying short-term PM2.5 exposure. Che et al. 
(2015) indicated that the within-group exposure variability is larger than the between-group 
variability for the daily exposure of children to PM2.5. Our recent study also reported that the 
within-subject variability (81.3% of σTotal

2) in personal exposure concentrations of PM2.5 was 
higher than the between-subject variability in concentrations (18.7% of σTotal

2) for university 
students (Hsu et al., 2020). In contrast, long-term (annual) concentrations of PM2.5 were fairly 
attributable to the between-site or between-group variability (47.8%). As a result, some 
advanced exposure models with the spatial variables have been used to estimate PM2.5 exposure. 
For instance, the land-use regression model incorporating annual PM2.5 levels from the 
monitoring stations and geographic information has been successfully developed to predict 
ambient PM2.5 concentrations for exposure estimates in epidemiological studies (Eeftens et al., 
2012; Wu et al., 2017). However, PM2.5 concentrations from FEM measurements are more 
reliable to be incorporated in geographic-based prediction models, while the annual FRM-like 
PM2.5 data has almost zero between-site variability (i.e., σB

2 = 0). To minimize the measurement 
error, the calibration of FRM-like PM2.5 is still suggested after the exposure estimates in the 
health risk analysis have been done. 

 
3.3 Factors Determining Variability in PM2.5 Concentrations 

Table 3 shows the definition of variables for 16 AQMSs. The information about these variables 
was obtained from the Taiwan EPA site and the nearest weather bureau. FEM PM2.5 concentrations 
and 12 variables associated with meteorology, gaseous air pollutants, and sampling site 
characteristics were included in the models. Since FRM-like PM2.5 concentrations presented an 
extremely low σB

2, this data was not evaluated in the mixed-effects model. 
Table 4 shows the model coefficients for the selected variables correlated with daily FEM PM2.5 

determined by the univariate and multivariate analysis. By performing the univariate analysis in 
the model, we found that the PM2.5 concentrations decreased significantly from 2014 to 2017,  
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Table 3. Definition of variables for 16 AQMS obtained from Taiwan EPA site and Weather Bureau. 

Variable (unit) Type of variable Number of measurements Description  
Year Categorical 23,214 2014 

2015 
2016 
2017 

Meteorological factors    
Ambient temperature (°C) Continuous 23,192 Range: 3.64–37.0 

Mean: 23.9 
Ambient Pressure (Pa) Continuous 19,228 Range: 962–1034 

Mean: 1010 
Relative humidity (%) Continuous 23,193 Range: 32.5–100 

Mean: 73.9 
Wind speed (m s–1) Continuous 23,181 Range: 0.1–14.7 

Mean: 1.6 
Rainfall (mm) Dichotomous 23,156 Range: 0.0–379 

Mean: 0.6 
Air pollutant factors 

NO2 (ppb) 

 
Continuous 

 
23,202 

 
Range: 0.22–67.5 
Mean: 20.4 

O3 (ppb) Continuous 20,270 Range: 1.22–85.9 
Mean: 27.3 

SO2(ppb) Continuous 23,121 Range: 0.22–22.6 
Mean: 3.1 

Sampling site factors 
Station type 

 
Categorical 

 
23,214 

 
0: Traffic station 
1: General station 

Height of sampling port (m) Ordinal 23,214 1: 3.5–13.5 
2: 17.5 
3: 19.5–21.5 

Distance to main road (m) Ordinal 21,757 1: 1–5.6 
2: 10–15 
3: 20–100 

Type of instrument  Categorical 23,214 0: VEREWA F701  
1: MetOne 1020 

 
when compared with the reference concentration in 2017. The meteorological factors including 
ambient temperature, relative humidity, wind speed, and rainfall were negatively correlated (p < 
0.001) with ambient PM2.5, which explained 18.3% [(0.246–0.201)/0.246] of the within-site 
variability and 6.63% [(0.027–0.025)/0.027] of the between-site variability (Table S6). The 
ambient pressure was not included in the model for daily PM2.5 estimates because of its high 
correlation with ambient temperature. The factors such as gaseous air pollutants (NO2, O3, and 
SO2) were positively correlated (p < 0.001) with ambient PM2.5, explaining 45.8% [(0.246–
0.133)/0.246] of the within-site variability and 26.8% [(0.027–0.020)/0.027] of the between-site 
variability (Table S6). Among sampling site factors, the only variable significantly affecting PM2.5 
concentrations was the type of instrument used for measurement, explaining 0% of the within-
site variability but 19.5% [(0.027–0.021)/0.027] of the between-site variability (Table S6). It was 
observed that the VEREWA F701 sampler presented a higher value of 17% than the MetOne 1020 
sampler. By performing the multivariate analysis in the model, we found that all the factors 
significantly affected concentration variability, explaining 50.2% [(0.245–0.122)/0.245] of the 
within-site variability and 15.3% [(0.027–0.023)/0.027] of the between-site variability (Table S6). 
The AIC scores from each mixed-effects model were shown in Fig. 2. We found that the selective 
model considering all the significant variables can predict 55% of ambient PM2.5 concentrations. 
Among all the variables, NO2, O3, and SO2 were the predominant variables, explaining 22.1%, 
13.5%, and 16.1% of σTotal

2 of PM2.5, respectively. 
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Table 4. Model coefficients for meteorological, air pollutant and sampling site factors associated with daily ambient PM2.5 with 
FEM measurements. 

Variables 
univariate multivariate 

β Exp(β) (S.E.) β Exp(β) (S.E.) 
Year     

2014 0.274 1.32 (1.01)** 0.171 1.19 (1.01)** 
2015 0.147 1.16 (1.01)** 0.109 1.12 (1.01)** 
2016 0.036 1.04 (1.01)** 0.064 1.07 (1.01)** 
2017 - - - - 

Meteorological factors     
Ambient temperature –0.016 0.984 (1.00)** -0.008 0.992 (1.00)** 
Relative humidity  –0.010 0.990 (1.00)** -0.008 0.992 (1.00)** 
Wind speed –0.162 0.850 (1.00)** -0.051 0.948 (1.00)** 
Rainfall –0.008 0.992 (1.00)** -0.003 0.997 (1.00)** 

Air pollutant factors    
NO2 0.038 1.038 (1.00)** 0.035 1.036 (1.00)** 
O3  0.014 1.014 (1.00)** 0.017 1.018 (1.00)** 
SO2 0.159 1.173 (1.00)** 0.090 1.091 (1.00)** 

Sampling site factors    
Station type     

Traffic 0.150 1.162 (1.106) - - 
Ambient - - - - 

Height of sampling port     
3.5–13.5 m 0.014 1.014 (1.105) - - 
17.5 m –0.089 0.915 (1.113) - - 
19.5–21.5 m - - - - 

Distance to main road     
1–5.6 m 0.080 1.084 (1.097) - - 
10–15 m 0.065 1.067 (1.097) - - 
20–100 m - - - - 

Type of instrument     
VEREWA F701 0.159 1.173 (1.077)* 0.035 1.04 (1.09) 
MetOne 1020 -  - - 

 
The meteorological factors have a strong influence on the pollutants, leading to daily 

fluctuations in the pollutant levels. These factors have been shown to explain 50–60% of σTotal
2 

of winter concentrations in China in a previous study by Zhang et al. (2015). The elevated PM2.5 
concentrations with lower temperature and higher atmospheric pressure are usually observed 
because the lower mixing layer and higher frequency of thermal inversion in winter can restrict 
atmospheric dispersion and thereby trap organic and inorganic matter in the particles. It was 
observed that the decrease in wind speed due to unfavorable atmospheric diffusion could lead 
to an increase in PM2.5 concentrations (Liao et al., 2018). The long-range transport usually 
observed in Taipei during the cold season may be, in part, attributable to the elevated PM2.5 

concentrations (Kuo et al., 2013; Hsu et al., 2019). The positive correlation of PM2.5 with gaseous 
air pollutants in our study confirmed the enhanced levels of PM2.5 due to the chemical reactions 
in the atmosphere involving precursor gases of NO2 and SO2. O3 was significantly and positively 
correlated with PM2.5, which probably could be explained by the covariance of VOCs. However, 
the precursor formation and meteorological conditions can add complexity to the relationship 
between both the air pollutants. Ito et al. (2007) have reported that the correlation between O3 
and PM2.5 changed with the season (positive in summer and negative in winter). In a previous 
study by Liu et al. (2013), it was highlighted that the use of different aerosol samplers (MetOne 
1020 vs VEREWA-F701) for measuring PM2.5 concentrations might result in a potential bias of 
exposure variability. It was not surprising that the height of the sample port, distance to the 
nearest main road, and station type were not significantly associated with ambient PM2.5 because 
the inherent confounders were not available for adjustment. Quang et al. (2012) indicated that  

https://doi.org/10.4209/aaqr.2020.05.0217
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Fig. 2. AIC scores for the selected variables associated PM2.5 concentrations using mixed-effect 
models. 

 
the PM2.5 concentrations decreased with the increase in the height of the office building; 
however, the vehicle emissions, particle formation, flow patterns around the building envelope, 
and street profile were the important determinants that should be taken into account for 
comparison. In addition, the differences in the aerosol instruments (MetOne 1020 and VEREWA 
F701) used in our study and the variations in the sampling factors (i.e., height of the sample port, 
distance to the nearest main road, and station type) led to variations in PM2.5 concentrations. For 
annual PM2.5, SO2 was significantly correlated with PM2.5 in addition to ambient temperature and 
time (in years) (Table S7). In the population-based study associated with exposure to PM2.5, 
meteorological conditions (i.e., temperature) are often adjusted in the model (Luo et al., 2016). 
Our results showed SO2 as an important factor showing a significant positive correlation with 
both daily and annual PM2.5. We suggest that SO2 should be taken into account in the future for 
health risk analysis associated with PM2.5 exposure for adjustment. 
 

4 CONCLUSIONS 
 

In this study, we highlighted that the FRM-like PM2.5 measurements with negligible between-
site variability might lead to non-differential misclassification of exposure. The gaseous 
pollutants (such as NO2, O3, and SO2) are significant factors affecting the spatial and temporal 
variations in ambient PM2.5 concentrations, which should be incorporated in the health risk 
assessment model. We indicated that the FEM measurements of PM2.5, rather than the FRM-like 
measurements, at the AQMSs are mainly applicable for exposure estimates in epidemiological 
studies. Then, the resultant exposure estimates of PM2.5 are further calibrated with the FRM 
measurements to minimize the measurement errors. 
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