Wenchao Gao1, Yifan Wang2, Hao Zhang2, Baoyu Guo1, Chenghang Zheng2, Jun Guo3, Xiang Gao This email address is being protected from spambots. You need JavaScript enabled to view it.2, Aibing Yu1,4

1 ARC Research Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Victoria 3800, Australia
2 State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310027, China
3 Fujian Longking Co., Ltd., Longyan 364000, China
4 Southeast University-Monash University Joint Research Institute, Suzhou Industrial Park, Jiangsu 215100, China


 

Received: April 16, 2020
Revised: July 2, 2020
Accepted: July 19, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.2020.04.0152  

  • Download: PDF


Cite this article:

Gao, W., Wang, Y., Zhang, H., Guo, B., Zheng, C., Guo, J., Gao, X. and Yu, A. (2020). Effect of the Vortex Formed by the Electrohydrodynamic Flow on the Motion of Particles in a Needle-plate Electrostatic Precipitator. Aerosol Air Qual. Res. 20: 2911–2924. https://doi.org/10.4209/aaqr.2020.04.0152


HIGHLIGHTS

  • Needle discharge electrode was used in this simulation work.
  • The effects of EHD flow on flow field were studied numerically.
  • The effects of ionic wind on particle motion behavior were studied.
 

ABSTRACT


This work numerically simulates the effect of the electrodynamic (EHD) flow on particle motion in a single-needle-plate electrode configuration. The interaction between the primary-secondary flow, and the trajectory of particles in a 3D environment is analyzed. In addition, the effects of the needle-shaped discharge electrode structure on the electric field and the flow field distribution are explored. The results show that the sharp tip of the needle emits a high-intensity discharge that generates a nearby high-speed ionic wind, which can reach a velocity of 9.028 m s–1 at an applied voltage and an inlet velocity of –60 kV and 1 m s–1, respectively. This ionic wind near the needle tip potentially increases the migration speed of particles. Moreover, 90% of the 1 µm particles penetrate the surface of the outlet, indicating that the EHD flow negatively affects the capture of fine particles. The relationships between the injection position, the residence time, and the escape velocity of the particles further confirm that the secondary flow significantly inhibits fine-particle capture. These findings can be applied to optimize an electrode design that efficiently uses high-speed ionic wind to capture particles, including the fine fraction.


Keywords: Electrostatic precipitator; Electrohydrodynamic flow; Needle discharge electrode; Vortex; Particle motion.



Aerosol Air Qual. Res. 20 :2911 -2924 . https://doi.org/10.4209/aaqr.2020.04.0152  


Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.