Supplementary material

Spatial and temporal variability of carbonaceous aerosol absorption in the Po Valley

Stefania Gilardoni¹, Paola Massoli²,*, Angela Marinoni³, Claudio Mazzoleni⁴, Andrew Freedman², Giovanni Lonati⁵, Silvana De Iulis⁶, Vorne Gianelle⁷

¹Institute for Polar Sciences, CNR-ISP, Via Gobetti 101, Bologna, Italy.
²Aerodyne Research Inc., 45 Manning Road, Billerica, MA 01821, USA.
³Institute for Atmospheric Sciences and Climate, CNR-ISAC, Via Gobetti 101, Bologna, Italy.
⁴Department of Physics and Atmospheric Sciences Program, Michigan Technological University, 1400 Townsend Drive, Houghton MI, 49931, USA
⁵Department of Civil and Environmental Engineering, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
⁶Institute of Condensed Matter Chemistry and Technologies for Energy, CNR-ICMATE, Via Roberto Cozzi, 53 - 20125 Milano, Italy.
⁷Agenzia Regionale di Protezione dell’Ambiente, Via Juvara, Milan, Italy.

*Now at Green Energy Consumers Alliance, 284 Amory Street, Boston, MA, 02130, USA.

Figure S1. Cumulative rain (blue), temperature (red), wind speed, and relative humidity observed during the four field experiments.
Figure S2. Time trend of the inverse of R correction coefficient (1/R - red open circles), attenuation coefficient (b_{Att} - blue line), and single scattering albedo (SSA - gray line) during the winter experiment at the Milan urban site. 1/R indicates the underestimation of light absorption due filter loading artifacts. 1/R varies between 1 and 1.4, corresponding to an underestimation up to 40%. The effect of loading (increasing b_{Att}) on 1/R is more prominent when the contribution of aerosol light absorption to total extinction is significant (SSA lower than 0.6).
Figure S3. Comparison of EC concentrations in PM$_1$ (red open circles) and PM$_{10}$ (black circles) at the Milan urban site during the two field experiments in winter (upper panel) and summer (lower panel). Most of the time PM$_1$ EC concentrations agree with the EC concentrations in PM$_{10}$ size fraction within the accuracy of thermal optical method employed (30%), as defined by protocol intercomparison studies (Karanasiou et al., 2015). On average, PM$_1$ accounts for 90% of EC concentration observed in PM$_{10}$ aerosol samples.
Figure S4. Fraction of particle number collected by a PM$_{10}$ sampling head derived from particle size distribution measured with a GRIMM Optical Particle Number at the urban site of Milano over four months in 2014.
Figure S5. Scatter plot of BrC absorption coefficients at 370 nm from aethalometer and water-soluble BrC absorption coefficient measured off-line with daily resolution. The error bars indicate the variability ranges derived from assuming AAE$_{BC}$ equal to 0.7 and 1.1, while the central values are estimated assuming AAE$_{BC}$ equal to 0.9.