Ariadna Huerta-Viso, Javier Crespo, Nuria Galindo, Eduardo Yubero, Jose Francisco Nicolás This email address is being protected from spambots. You need JavaScript enabled to view it.

Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202 Elche, Spain


 

Received: February 14, 2020
Revised: April 26, 2020
Accepted: June 22, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.2020.01.0038  

  • Download: PDF


Cite this article:

Huerta-Viso, A., Crespo, J., Galindo, N., Yubero, E. and Nicolás, J. F. (2020). Saharan Dust Events over the Valencian Community (Eastern Iberian Peninsula): Synoptic Circulation Patterns and Contribution to PM10 Levels. Aerosol Air Qual. Res. 20: 2519–2528. https://doi.org/10.4209/aaqr.2020.01.0038


HIGHLIGHTS

  • Average dust contribution suppose 23% to the PM10 average value in VC.
  • Greatest Saharan mass contributions take place mainly in summertime.
  • Five types of meteorological scenarios at 850 hPa can trigger SDE into VC.
  • Saharan inputs fit well with Gamma distribution functions.
 

ABSTRACT


This study assessed Saharan dust events (SDE) passing over the Valencian Community (VC; eastern Spain) during the period of 2014–2017 by investigating the following topics: a) the occurrence of SDE and their impact on PM10 mass concentrations, b) the identification of the favorable synoptic patterns at 850 hPa associated with SDE via cluster analysis and c) the applicability of the gamma probability density function (PDF) in fitting the mass contributions of SDE. We determined that these events affect the VC on ~26% of the days of the year, thereby contributing 3.3 µg m–3 (~23%) to the average PM10 concentration. Five circulation scenarios were identified. In Scenario 1 (17.4%), the transport of Saharan dust was due to the combination of a trough situated over the southwest of the Iberian Peninsula and a high-pressure system centered on western Algeria, Tunisia and eastern Libya. According to the PDF analysis, SDE characterized by this type of pattern were the most likely to substantially increase PM10 mass concentrations. In Scenarios 3 (39.2%) and 5 (19.4%), which contributed to high concentrations of mineral dust in the VC, a high-pressure system was located over North Africa. Scenarios 1, 3 and 5 occurred more frequently during summer, especially Scenario 3 (69%). On the other hand, Scenarios 2 (16.2%) and 4 (7.2%), both characterized by a deep low over the west or northwest of the Iberian Peninsula, typically arose during spring and, to a lesser extent, winter. These two scenarios displayed a lower probability of elevating mineral dust levels in the study area.


Keywords: PM10; Meteorological scenario; Cluster analysis; Saharan dust; Gamma distribution.



REFERENCES


  1. Aleksandropoulou, V. and Lazaridis, M. (2013). Identification of the influence of african dust on PM10 concentrations at the Athens air quality monitoring network during the period 2001-2010. Aerosol Air Qual. Res. 13: 1492–1503. [Publisher Site]

  2. Alonso-Pérez, S., Cuevas, E. and Querol, X. (2011). Objective identification of synoptic meteorological patterns favouring African dust intrusions into the marine boundary layer of the subtropical eastern north Atlantic region. Meteorol. Atmos. Phys. 113: 109–124. [Publisher Site]

  3. Barnaba, F., Bolignano, B., Di Liberto, L., Morelli, M., Lucarelli, F., Nava, S., Perrino, C., Canepari, S., Basart, S., Costabile, F., Dionisi, D., Ciampichetti, S., Sozzi, R. and Gobbi, G.P. (2017). Desert dust contribution to PM10 loads in Italy: Methods and recommendations addressing the relevant European Commission Guidelines in support to the Air Quality Directive 2008/50. Atmos. Environ. 161: 288–305. [Publisher Site]

  4. Castañer, R., Nicolás, J.F., Crespo, J., Yubero, E., Galindo, N., Caballero, S. and Pastor, C. (2017). Influence of air mass origins on optical properties and PM concentrations measured at a high mountain station located in the southwestern Mediterranean. Atmos. Res. 197: 244–254. [Publisher Site]

  5. Conte, M., Merico, E., Cesari, D., Dinoi, A., Grasso, F.M., Donateo, A., Guascito, M.R. and Contini, D. (2020). Long-term characterisation of African dust advection in south-eastern Italy: Influence on fine and coarse particle concentrations, size distributions, and carbon content. Atmos. Res. 233: 104690. [Publisher Site]

  6. Díaz, J., Linares, C., Carmona, R., Russo, R., Ortiz, C., Salvador, P. and Machado Trigo, R. (2017). Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions. Environ. Res. 156: 455–467. [Publisher Site]

  7. Draxler, R.R. and Rolph, G.D. (2013). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. [Website Link]

  8. Ealo, M., Alastuey, A., Ripoll, A., Pérez, N., Cruz Minguillón, M., Querol, X. and Pandolfi, M. (2016). Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean. Atmos. Chem. Phys. 16: 12567–12586. [Publisher Site]

  9. Escudero, M., Castillo, S., Querol, X., Ávila, A., Alarcón, M., Viana, M.M., Alastuey, A., Cuevas, E. and Rodriguez, S. (2005). Wet and dry African dust episodes over eastern Spain. J. Geophys. Res. 110: D18S08 [Publisher Site]

  10. Escudero, M., Querol, X., Pey, J., Alastuey, A., Pérez, N., Ferreira, F., Alonso, S., Rodríguez, S. and Cuevas, E. (2007). A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos. Environ. 41: 5516–5524. [Publisher Site]

  11. Fernández, A.J., Molero, F., Salvador, P., Revuelta, A., Becerril-Valle, M., Gómez-Moreno, F.J., Artíñano, B. and Pujadas, M. (2017). Aerosol optical, microphysical and radiative forcing properties during variable intensity African dust events in the Iberian Peninsula. Atmos. Res. 196: 129–141. [Publisher Site]

  12. Galindo, N., Yubero, E., Nicolás, J.F., Crespo, J., Varea, M. and Gil-Moltó, J. (2017). Regional and long-range transport of aerosols at Mt. Aitana, Southeastern Spain. Sci. Total Environ. 584–585: 723–730. [Publisher Site]

  13. Galindo, N., Yubero, E., Clemente, A., Nicolás, J.F., Varea, M. and Crespo, J. (2020). PM events and changes in the chemical composition of urban aerosol: A case study in the western Mediterranean. Chemosphere 244: 125520. [Publisher Site]

  14. García, O.E., Expósito, F.J., Díaz, J.P. and Díaz, A.M. (2011). Radiative forcing under aerosol mixed conditions. J. Geophys. Res. 116: D01201. [Publisher Site]

  15. Goudie, A.S. (2014). Desert dust and human health disorders. Environ. Int. 63: 101–113. [Publisher Site]

  16. Hrdličková, Z., Michálek, J., Kolář, M. and Veselý, V. (2008). Identification of factors affecting air pollution by dust aerosol PM10 in Brno City, Czech Republic. Atmos. Environ. 42: 8661–8673. [Publisher Site]

  17. IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.1535.

  18. Jiménez, E., Linares, C., Martinez, D. and Díaz, J. (2010). Role of Saharan dust in the relationship between particulate matter and short-term daily mortality among the elderly in Madrid (Spain). Sci. Total Environ. 408: 5729–5739. [Publisher Site]

  19. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., … Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77: 437–71. [Publisher Site]

  20. Karanasiou, A., Moreno, N., Moreno, T., Viana, M., de Leeuw, F. and Querol, X. (2012). Health effects from Saharan dust episodes in Europe: literature review and research gaps. Environ. Int. 47: 107–114. [Publisher Site]

  21. Mallone, S., Stafoggia, M., Faustini, A., Gobbi, G.P., Marconi, A. and Forastiere, F. (2011). Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. Environ. Health Perspect. 119: 1409–1414. [Publisher Site]

  22. Mandija, F., Sicard, M., Comerón, A., Alados-Arboledas, L., Guerrero-Rascado, J.L., Barragan, R., Bravo-Aranda, J.A., Granados-Muñoz, M.J., Lyamani, L., Muñoz Porcar, C., Rocadenbosch, F., Rodríguez, A., Valenzuela, A. and David García Vizcaíno, D. (2017). Origin and pathways of the mineral dust transport to two Spanish EARLINET sites: Effect on the observed columnar and range-resolved dust optical properties. Atmos. Res. 117: 69–83. [Publisher Site]

  23. Marconi, M., Sferlazzo, D.M., Becagli, S., Bommarito, C., Calzolai, G., Chiari, M., di Sarra, A., Ghedini, C., Gómez-Amo, J.L., Lucarelli, F., Meloni, D., Monteleone, F., Nava, S., Pace, G., Piacentino, S., Rugi, F., Severi, M., Traversi, R. and Udisti, R. (2014). Saharan dust aerosol over the central Mediterranean Sea: PM10 chemical composition and concentration versus optical columnar measurements. Atmos. Chem. Phys. 14: 2039–2054. [Publisher Site]

  24. Nastos, P.T. (2012). Meteorological Patterns Associated with Intense Saharan Dust Outbreaks over Greece in winter. Adv. Meteorol. 2012: 828301. [Publisher Site]

  25. Nava, S., Becagli, S., Calzolai, G., Chiari, M., Lucarelli, F., Prati, P., Traversi, R., Udisti, R., Valli, G. and Vecchi, R. (2012). Saharan dust impact in central Italy: An overview on three years elemental data records. Atmos. Environ. 60: 444–452. [Publisher Site]

  26. Nicolás, J.F., Chiari, M., Crespo, J., Galindo, N., Lucarelli, F., Nava, S. and Yubero, E. (2011). Assessment of potential source regions of PM2.5 components at a southwestern Meiterranean site. Tellus B 63: 96–106. [Publisher Site]

  27. Nicolás, J.F., Crespo, J., Yubero, E., Soler, R., Carratalá, A. and Mantilla, A. (2014). Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations. Sci. Total Environ. 466–467: 439–436. [Publisher Site]

  28. Nicolás, J.F., Castañer, R., Crespo, J., Yubero, E., Galindo, N. and Pastor, C. (2018). Seasonal variability of aerosol absorption parameters at a remote site with high mineral dust loads. Atmos. Res. 210: 100–109. [Publisher Site]

  29. Ozel, G. and Cakmakyapan, S. (2015). A new approach to the prediction of PM10 concentrations in Central Anatolia Region, Turkey. Atmos. Pollut. Res. 6: 735–741. [Publisher Site]

  30. Pey, J., Querol, X., Alastuey, A., Forastiere, F. and Stafoggia, M. (2013). African dust outbreaks over the Mediterranean Basin during 2001-2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos. Chem. Phys. 13: 1395–1410. [Publisher Site]

  31. Querol, X., Alastuey, A., Moreno, T., Viana, M.M., Castillo, S., Pey, J., Rodriguez, S., Artiñano, B., Salvador, P., Sánchez, M., García Dos Santos, S., Herce Garraleta, M.D., Fernández-Patier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monforte, E., Sanz, M.J., Palomo-Marín, R., ... Sánchez de la Campa, A. (2008). Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos. Environ. 42: 3964–3979. [Publisher Site]

  32. Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., Pérez, N., Moreno, T., Viana, M., Mihalopoulus, N., Kallos, G. and Kleanthous, S. (2009). African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmos. Environ. 43: 4266–4277. [Publisher Site]

  33. Querol, X., Pérez, N., Reche, C., Ealo, M., Ripoll, A., Tur, J., M. Pandolfi, M., Pey, J., Salvador, P., Moreno, T. and Alastuey, A. (2019a). African dust and air quality over Spain: Is it only dust that matters? Sci. Total Environ. 686: 737–752. [Publisher Site]

  34. Querol, X., Tobías, A., Pérez, N., Karanasiou, A., Amato, F., Stafoggia, M., Pérez Garcia-Pando, C., Ginoux, P., Forastiere, F., Gumy, S., Mudu, P. and Alastuey, A. (2019b). Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Int. 130: 104867. [Publisher Site]

  35. Rodríguez, S., Querol, X., Alastuey, A., Kallos, G. and Kakakliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmos. Environ. 35: 2433–2447. [Publisher Site]

  36. Salvador, P., Artíñano, B., Molero, F., Viana, M., Pey, J., Alastuey, A. and Querol, X. (2013). African dust contribution to ambient aerosol levels across central Spain: Characterization of long-range transport episodes of desert dust. Atmos. Res. 127: 117–129. [Publisher Site]

  37. Salvador, P., Alonso-Pérez, S., Pey, J., Artíñano, B., de Bustos, J.J., Alastuey, A. and Querol, X. (2014). African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas. Atmos. Chem. Phys. 14: 6759–6775. [Publisher Site]

  38. Titos, G., Ealo, M., Pandolfi, M., Pérez, N., Sola, Y., Sicard, M., Comerón, A., Querol, X. and Alastuey, A. (2017). Spatiotemporal evolution of a severe winter dust event in the western Mediterranean: Aerosol optical and physical properties. J. Geophys. Res. 122: 4052–4069. [Publisher Site]

  39. Valenzuela, A., Olmo, F.J., Lyamani, H., Antón, M., Quirantes, A. and Alados-Arboledas, L. (2012). Classification of aerosol radiative properties during African desert dust intrusions over southeastern Spain by sector origins and cluster analysis. J. Geophys. Res. 117: D06214. [Publisher Site]

Aerosol Air Qual. Res. 20 :2519 -2528 . https://doi.org/10.4209/aaqr.2020.01.0038  


Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.