Ying Rao1,2,3#, Heyang Li2,4#, Mingxia Chen5, Qingyan Fu6, Guoshun Zhuang This email address is being protected from spambots. You need JavaScript enabled to view it.1, Kan Huang This email address is being protected from spambots. You need JavaScript enabled to view it.1,7,8


1 Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
2 Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
3 Health Center of Minnan Normal University, Zhangzhou 363000, China
4 Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China
5 Department of Biological technology and Engineering, HuaQiao University, Xiamen 361021, China
6 Shanghai Environmental Monitoring Center, Shanghai 200030, China
7 Institute of Eco-Chongming (IEC), Shanghai 202162, China
8 Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China

# These authors contributed equally to this work.


Received: January 21, 2020
Revised: April 15, 2020
Accepted: May 21, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.4209/aaqr.2020.01.0030  

Cite this article:

Rao, Y., Li, H., Chen, M., Fu, Q., Zhuang, G. and Huang, K. (2020). Characterization of Airborne Microbial Aerosols during a Long-range Transported Dust Event in Eastern China: Bacterial Community, Influencing Factors, and Potential Health Effects. Aerosol Air Qual. Res. 20: 2834–2845. https://doi.org/10.4209/aaqr.2020.01.0030


  • Bacteria in a dust event was analyzed using the 16s rRNA sequencing technique.
  • Bacterial community structures were affected by wind speed and aerosol species.
  • The relative abundance of Cyanobacteria, which is harmful, increased during dust.


Samples of atmospheric microbial aerosols were collected before, during, and after a dust invasion in Shanghai and analyzed using 16S rRNA high-throughput sequencing. The bacterial community structures in the mixed pollutive aerosols and dust were characterized, and the key environmental factors were identified. The dominant phyla were Proteobacteria, Actinomycetes, and Firmicutes, and the relative abundance of Acidobacteria increased significantly during the episode. Additionally, marked differences in the relative abundances of the 22 detected genera were observed between the three sampling stages: The dominant genera were Rubellimicrobium and Paracoccus prior to the arrival of the dust but became Deinococcus and Chroococcidiopsis during the invasion and then Clostridium and Deinococcus afterward. Notably, the relative abundance of Cyanobacteria, which is known to cause hepatotoxicity and promote tumor growth in humans, grew substantially during the event. Finally, statistical analysis revealed the largest environmental factors affecting the bacterial communities to be wind speed and the SO2, SO42–, NO3, PM10, NH4+, and Ca2+ concentrations.

Keywords: Airborne bacteria; Bacterial community structure; Influencing factors; Long-range transported dust.

Aerosol Air Qual. Res. 20 :2834 -2845 . https://doi.org/{field 40} 

Don't forget to share this article 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

SCImago Journal & Country Rank

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.