REFERENCES
- Achilleos, S., Kioumourtzoglou, M.A., Wu, C.D., Schwartz, J.D., Koutrakis, P. and Papatheodorou, S.I. (2017). Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ. Int. 109: 89–100. [Publisher Site]
- Allen, G.A., Babich, P. and Poirot, R.L. (2004). Evaluation of a new approach for real time assessment of woodsmoke PM, Proceedings of the Regional and Global Perspectives on Haze: Causes, Consequences, and Controversies, Air and Waste Management Association Visibility Specialty Conference. (pp. 25–29). [Website Link]
- Allen, G.A., Miller, P.J., Rector, L.J., Brauer, M. and Su, J.G. (2011). Characterization of valley winter woodsmoke concentrations in Northern NY using highly time-resolved measurements. Aerosol Air Qual. Res. 11: 519–530. [Publisher Site]
- Bari, M.A., Baumbach, G., Kuch, B. and Scheffknecht, G. (2010). Temporal variation and impact of woodsmoke pollution on a residential area in southern Germany. Atmos. Environ. 44: 3823–3832. [Publisher Site]
- Bari, M.A., Baumbach, G., Kuch, B. and Scheffknecht, G. (2011). Air pollution in residential areas from wood-fired heating. Aerosol Air Qual. Res. 11: 749–757. [Publisher Site]
- Bertrand, A., Stefenelli, G., Bruns, E.A., Pieber, S.M., Temime-Roussel, B., Slowik, J.G., Prévôt, A.S.H., Wortham, H., El Haddad, I. and Marchand, N. (2017). Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmos. Environ. 169: 65–79. [Publisher Site]
- Blanchard, C.L., Shaw, S.L., Edgerton, E.S. and Schwab, J.J. (2019). Emission influences on air pollutant concentrations in New York state: II. PM2.5 organic and elemental carbon constituents. Atmos. Environ. 3: 100039. [Publisher Site]
- Bølling, A.K., Totlandsdal, A.I., Sallsten, G., Braun, A., Westerholm, R., Bergvall, C., Boman, J., Dahlman, H.J., Sehlstedt, M., Cassee, F., Sandstrom, T., Schwarze, P.E. and Herseth, J.I. (2012). Woodsmoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part. Fibre Toxicol. 9: 45. [Publisher Site]
- Congressional Research Service (2018). EPA’s Wood Stove / Wood Heater Regulations: Frequently Asked Questions. [Website Link]
- Danielsen, P.H., Møller, P., Jensen, K.A., Sharma, A.K., Wallin, H., Bossi, R., Autrup, H., Mølhave, L., Ravanat, J.L., Briedé, J.J., de Kok, T.M. and Loft, S. (2011). Oxidative stress, DNA damage, and inflammation induced by ambient air and woodsmoke particulate matter in human A549 and THP-1 cell lines. Chem. Res. Toxicol. 24: 168–184. [Publisher Site]
- Di, Q., Dai, L., Wang, Y., Zanobetti, A., Choirat, C., Schwartz, J.D. and Dominici, F. (2017a). Association of short-term exposure to air pollution with mortality in older adults. J. Am. Med. Assoc. 318: 2446–2456. [Publisher Site]
- Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F. and Schwartz, J.D. (2017b). Air pollution and mortality in the Medicare population. N. Engl. J. Med. 376: 2513–2522. [Publisher Site]
- Glasius, M., Ketzel, M., Wåhlin, P., Jensen, B., Mønster, J., Berkowicz, R. and Palmgren, F. (2006). Impact of wood combustion on particle levels in a residential area in Denmark. Atmos. Environ. 40: 7115–7124. [Publisher Site]|
- Grange, S.K., Salmond, J.A., Trompetter, W.J., Davy, P.K. and Ancelet, T. (2013). Effect of atmospheric stability on the impact of domestic wood combustion to air quality of a small urban township in winter. Atmos. Environ. 70: 28–38. [Publisher Site]
- Hedberg, E., Johansson, C., Johansson, L., Swietlicki, E. and Brorström-Lundén, E. (2006). Is levoglucosan a suitable quantitative tracer for wood burning? Comparison with receptor modeling on trace elements in Lycksele, Sweden. J. Air. Waste Manage. Assoc. 56: 1669–1678. [Publisher Site]
- Hellén, H., Hakola, H., Haaparanta, S., Pietarila, H. and Kauhaniemi, M. (2008). Influence of residential wood combustion on local air quality. Sci. Total Environ. 393: 283–290. [Publisher Site]
- Henry, R., Norris, G.A., Vedantham, R. and Turner, J.R. (2009). Source region identification using kernel smoothing. Environ. Sci. Technol. 43: 4090–4097. [Publisher Site]
- Henry, R.C., Chang, Y.S. and Spiegelman, C.H. (2002). Locating nearby sources of air pollution by nonparametric regression of atmospheric concentrations on wind direction. Atmos. Environ. 36: 2237–2244. [Publisher Site]
- Jeong, C.H., Evans, G.J., Dann, T., Graham, M., Herod, D., Dabek-Zlotorzynska, E., Mathieu, D., Ding, L. and Wang, D. (2008). Influence of biomass burning on wintertime fine particulate matter: source contribution at a valley site in rural British Columbia. Atmos. Environ. 42: 3684–3699. [Publisher Site]
- Jones, K., Schwarzhoff, P., Teakles, A. and Vingarzan, R. (2011). Residential Wood Combustion PM2.5 Sampling Project Whitehorse, Yukon–Winter 2009. Meteorological Service of Canada, Environment Canada, Pacific and Yukon Region. [PDF Link]
- Kelly, K.E., Sarofim, A.F., Lighty, J.S., Arnott, W.P., Rogers, C.F., Zielinska, B. and Prather, K.A. (2003). User guide for characterizing particulate matter: Evaluation of several real-time methods. University of Utah, Institute for Clean and Secure Energy. [Publisher Site]
- Krecl, P., Ström, J. and Johansson, C. (2008). Diurnal variation of atmospheric aerosol during the wood combustion season in Northern Sweden. Atmos. Environ. 42: 4113–4125. [Publisher Site]
- Larson, T., Su, J., Baribeau, A.M., Buzzelli, M., Setton, E. aand Brauer, M. (2007). A spatial model of urban winter woodsmoke concentrations. Environ. Sci. Technol. 41: 2429–2436. [Publisher Site]
- Li, M., Fan, X., Zhu, M., Zou, C., Song, J., Wei, S., Jia, W. and Peng, P.A. (2018). Abundance and light absorption properties of brown carbon emitted from residential coal combustion in China. Environ. Sci. Technol. 53: 595–603. [Publisher Site]
- Loeppky, J.A., Cagle, A.S., Sherriff, M., Lindsay, A. and Willis, P. (2013). A local initiative for mobile monitoring to measure residential woodsmoke concentration and distribution. Air Qual. Atmos. Health 6: 641–653. [Publisher Site]
- Makar, M., Antonelli, J., Di, Q., Cutler, D., Schwartz, J. and Dominici, F. (2017). Estimating the causal effect of low levels of fine particulate matter on hospitalization. Epidemiology 28: 627–634. [Publisher Site]
- Martin, M., Tritscher, T., Juranyi, Z., Heringa, M.F., Sierau, B., Weingartner, E., Chirico, R., Gysel, M., Prévôt, A.S.H., Baltensperger, U. and Lohmann, U. (2013). Hygroscopic properties of fresh and aged wood burning particles. J. Aerosol Sci. 56: 15–29. [Publisher Site]
- Masiol, M., Squizzato, S., Rich, D.Q. and Hopke, P.K. (2019). Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmos. Environ. 201: 110–120. [Publisher Site]
- Naeher, L.P., Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koenig, J.Q. and Smith, K.R. (2007). Woodsmoke health effects: A review. Inhalation Toxicol. 19: 67–106. [Publisher Site]
- New York State Department of Health (NYS-DOH) (2013). Fine particulate matter concentrations in outdoor air near outdoor wood-fired boilers. [Website Link]
- Olson, M.R., Victoria Garcia, M., Robinson, M.A., Van Rooy, P., Dietenberger, M.A., Bergin, M. and Schauer, J.J. (2015). Investigation of black and brown carbon multiple‐wavelength‐dependent light absorption from biomass and fossil fuel combustion source emissions. J. Geophys. Res. 120: 6682–6697. [Publisher Site]
- Park, S.S., Hansen, A.D.A. and Cho, S.Y. (2010). Measurement of real time black carbon for investigating spot loading effects of Aethalometer data. Atmos. Environ. 44: 1449–1455. [Publisher Site]
- Ranasinghe, D.R., Choi, W., Winer, A.M. and Paulson, S.E. (2016). Developing high spatial resolution concentration maps using mobile air quality measurements. Aerosol Air Qual. Res. 16: 1841–1853. [Publisher Site]
- Robinson, D.L., Monro, J.M. and Campbell, E.A. (2007). Spatial variability and population exposure to PM2.5 pollution from woodsmoke in a New South Wales country town. Atmos. Environ. 41: 5464–5478. [Publisher Site]
- Schwartz, J., Austin, E., Bind, M.A., Zanobetti, A. and Koutrakis, P. (2015). Estimating causal associations of fine particles with daily deaths in Boston. Am. J. Epidemiol. 182: 644–650. [Publisher Site]
- Schwartz, J., Bind, M.A. and Koutrakis, P. (2017). Estimating causal effects of local air pollution on daily deaths: effect of low levels. Environ. Health Perspect. 125: 3–29. [Publisher Site]
- Shi, L., Zanobetti, A., Kloog, I., Coull, B.A., Koutrakis, P., Melly, S.J. and Schwartz, J.D. (2015). Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environ. Health Perspect. 124: 46–52. [Publisher Site]
- Snyder, D.C. (2012). LADCO Midwest woodsmoke study: Grand rapids case study. Final Report. [Website Link]
- Su, J.G., Allen, G., Miller, P.J. and Brauer, M. (2013). Spatial modeling of residential woodsmoke across a non-urban upstate New York region. Air Qual. Atmos. Health 6: 85–94. [Publisher Site]
- Su, J.G., Hopke, P.K., Tian, Y., Baldwin, N., Thurston, S.W., Evans, K. and Rich, D.Q. (2015). Modeling particulate matter concentrations measured through mobile monitoring in a deletion/substitution/addition approach. Atmos. Environ. 122: 477–483. [Publisher Site]
- Thatcher, T.L., Kirchstetter, T.W., Tan, S.H., Malejan, C.J. and Ward, C.E. (2014). Near-Field Variability of Residential Woodsmoke Concentrations. Atmos. Clim. Sci. 4: 622. [Publisher Site]
- U.S EPA (2018a). 2014 National Emissions Inventory Report. [Website Link]
- U.S EPA (2018b). 2014 National Air Toxics Assessment. [Website Link]
- U.S. EPA (2018c). Technical Assistance Document for the Reporting of Daily Air Quality - the Air Quality Index (AQI). [PDF Link]
- Virkkula, A., Mäkelä, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hämeri, K. and Koponen, I.K. (2007). A simple procedure for correcting loading effects of aethalometer data. J. Air Waste Manage. Assoc. 57: 1214–1222. [Publisher Site]
- Vodonos, A., Awad, Y.A. and Schwartz, J. (2018). The concentration-response between long-term PM2.5 exposure and mortality; A meta-regression approach. Environ. Res. 166: 677–689. [Publisher Site]
- Wang, Y., Hopke, P.K., Rattigan, O.V., Xia, X., Chalupa, D.C. and Utell, M.J. (2011). Characterization of residential wood combustion particles using the two-wavelength aethalometer. Environ. Sci. Technol. 45: 7387–7393. [Publisher Site]
- Wang, Y., Hopke, P.K., Rattigan, O.V., Chalupa, D.C. and Utell, M.J. (2012). Multiple-year black carbon measurements and source apportionment using Delta-C in Rochester, New York. J. Air. Waste Manage. Assoc. 62: 880–887. [Publisher Site]
- Wang, Z., Calderón, L., Patton, A.P., Sorensen Allacci, M., Senick, J., Wener, R., Andrews, C.J. and Mainelis, G. (2016). Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building. J. Air. Waste Manage. Assoc. 66: 1109–1120. [Publisher Site]
- Weichenthal, S., Kulka, R., Lavigne, E., Van Rijswijk, D., Brauer, M., Villeneuve, P.J., Stieb, D., Joseph, and Burnett, R.T. (2017). Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology. 28: 329–337. [Publisher Site]
- Weimer, S., Mohr, C., Richter, R., Keller, J., Mohr, M., Prevot, A.S.H. and Baltensperger, U. (2009). Mobile measurements of aerosol number and volume size distributions in an Alpine valley: Influence of traffic versus wood burning. Atmos. Environ. 43: 624–630. [Publisher Site]
- Wilson, N.K., Barbour, R.K., Chuang, J.C. and Mukund, R. (1995). Evaluation of a real-time monitor for fine particle-bound PAH in air. Polycyclic Aromat. Compd. 5: 167–174. [Publisher Site]
- Yan, C., Zheng, M., Sullivan, A.P., Shen, G., Chen, Y., Wang, S., Zhao, B., Cai, S., Desyaterik, Y., Li, X., Zhou, T., Gustafsson, Ö. and Collett, Jr., J.C. (2018). Residential coal combustion as a source of levoglucosan in China. Environ. Sci. Technol. 52: 1665–1674. [Publisher Site]
- Yli-Tuomi, T., Siponen, T., Taimisto, R.P., Aurela, M., Teinilä, K., Hillamo, R., Pekkanen, J., Salonen, R.O. and Lanki, T. (2015). Impact of wood combustion for secondary heating and recreational purposes on particulate air pollution in a suburb in Finland. Environ. Sci. Technol. 49: 4089–4096. [Publisher Site]
- Yu, K.N., Cheung, Y.P., Cheung, T. and Henry, R.C. (2004). Identifying the impact of large urban airports on local air quality by nonparametric regression. Atmos. Environ. 38: 4501–4507. [Publisher Site]
- Zelikoff, J.T., Chen, L.C., Cohen, M.D. and Schlesinger, R.B. (2002). The toxicology of inhaled woodsmoke. J. Toxicol. Environ. Health Part B 5: 269–282. [Publisher Site]
- Zhang, J., Marto, J.P. and Schwab, J.J. (2018). Exploring the applicability and limitations of selected optical scattering instruments for PM mass measurement. Atmos. Meas. Tech. 11: 2995–3005. [Publisher Site]
- Zhang, K.M., Allen, G., Yang, B., Chen, G., Gu, J., Schwab, J., Felton, D. and Rattigan, O. (2017). Joint measurements of PM2.5 and light-absorptive PM in woodsmoke-dominated ambient and plume environments. Atmos. Chem. Phys. 17: 11441–11452. [Publisher Site]