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ABSTRACT 

 

Although woodsmoke from residential wood heating can be the dominant source of winter PM2.5 in rural areas, routine 

monitoring is done primarily in urban or suburban areas. To obtain data on elevated woodsmoke concentrations from nearby 

sources, the PM2.5, black carbon at 880 and 370 nm, particle-bound polycyclic aromatic hydrocarbons (PAHs), and wind 

speed and direction were measured during winter at three residential locations in Saranac Lake, New York. A paired-site 

design enabled the identification of local sources relative to larger spatial scales. With the exception of occasional regional 

PM events, the hourly measurements of this pollutant between the paired sites exhibited poor correlations, suggesting that 

local woodsmoke was responsible for the observed increases in PM values. One location that was adjacent to a residence 

with a wood stove, which was 40 meters from the monitoring site, experienced repeated episodes of elevated PM2.5 

concentrations, with a maximum 3-hour average of 150 µg m–3, a maximum 24-hour rolling average of 64 µg m–3, and a 

maximum midnight-to-midnight average of 46 µg m–3. Despite these PM events, the data indicated that this location was 

likely in compliance with the current U.S. EPA National Ambient Air Quality Standards (NAAQS) for PM2.5. The daily 

PM2.5 concentration peaked and troughed during the nighttime and the daytime, respectively, at all of the sites, which is 

consistent with local ground-level pollution sources, such as woodsmoke; this diel pattern was also confirmed by 

Aaethalometer Delta-C (DC) data, a woodsmoke PM indicator. The particle-bound PAH data was less specific than the DC 

data to the PM in the woodsmoke, partly because the instrument for the former also responds to traffic pollution. One site 

repeatedly displayed the influence of 2-cycle engine snowmobile exhaust during the early evening hours, with very high 

PAH concentrations but only modestly elevated DC concentrations. Subsequent tests showed that fresh 2-cycle small engine 

exhaust produces a somewhat weaker response than woodsmoke in the DC in terms of the concentration per unit of PM. 
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INTRODUCTION 

 

Woodsmoke from residential wood heating contains a 

large number of toxic compounds (Zelikoff et al., 2002; 

Danielsen et al., 2011; Bølling et al., 2012) and accounts for 

15% of U.S. PM emissions, which is five times more than 

U.S. petroleum refineries, cement manufactures, and pulp 

and paper mills combined (U.S. EPA, 2018a). In rural areas, 

PM emissions from residential wood heating often dominate 

emissions from all other source sectors combined (EPA, 

2018a), can account for 50% of total area source air toxics 

cancer risk (EPA, 2018b), and may be trending upwards in 

rural New York (Masiol et al., 2018; Blanchard et al., 2019). 

Woodsmoke PM tends to be higher when temperatures are 

colder as indicated by heating degree days (Zhang et al., 2017) 

due to the increased use of residential wood heating appliances. 
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Exposure to woodsmoke has been shown to have a range of 

adverse health effects (Naeher et al., 2007; Weichenthal et 

al., 2017). Elevated levels of PM well below the current 

U.S. Environmental Protection Agency (EPA) National 

Ambient Air Quality Standards (NAAQS) of 35 µg m–3 daily 

average and 12 µg m–3 annual average have been associated 

with increased mortality (Schwartz et al., 2015; Schwartz et 

al., 2016; Achilleos et al., 2017; Di et al., 2017a, b; Maker 

et al., 2017; Vodonos et al., 2018). As part of the EPA 2015 

revisions to the New Source Performance Standards for 

New Residential Wood Heaters (2015 NSPS), PM emission 

standards for new residential wood heating devices were 

recently made more stringent to reduce exposure to 

woodsmoke. While this regulation may reduce emissions and 

exposure from new installations of wood burning appliances, 

it does not apply to existing appliances. The majority of 

residential appliances in use today have either older control 

technologies or are uncontrolled, such as pre-1988 NSPS 

stoves and indoor or outdoor wood furnaces installed before 

2015 (Congressional Research Service, 2018).  

Routine monitoring of PM2.5 for determining compliance 

with the National Ambient Air Quality Standards for PM2.5 
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(PM-NAAQS) is done by state and local air agencies. These 

monitoring sites are usually located in urban areas or near 

large industrial point sources, and do not characterize the 

potential for elevated woodsmoke PM exposures from 

nearby individual residential wood heating devices in small 

rural towns. Several studies have measured ambient PM 

concentrations in residential areas using fixed monitoring 

sites or mobile monitoring platforms (Glasius et al., 2006; 

Larson et al., 2007; Robinson et al., 2007; Hellén et al., 

2008; Jeong et al., 2008; Krecl et al., 2008; Bari et al., 2010; 

Allen et al., 2011; Bari et al., 2011; Wang et al., 2011; Grange 

et al., 2013; Loeppky et al., 2013; Thatcher et al., 2014; Su 

et al., 2015; Ranasinghe et al., 2016). Most of these studies 

characterized woodsmoke PM in the local airshed but were 

not designed to characterize PM from individual nearby 

woodsmoke plumes. One study explicitly chose sites to avoid 

large impacts by a single source (Yli-Tuomi et al., 2015). Some 

of these studies used integrated filter PM sampling, and some 

had hourly or shorter average PM measurements. Time-

resolved (on-line or continuous) measurements are useful in 

identification of specific sources; Snyder (2012) and Zhang 

(2017) measured PM in individual plumes using forward 

light scattering methods on mobile monitoring platforms. 

A study by the New York State Department of Health 

(NYS-DOH, 2013) was specifically designed to identify 

and assess the impact of large individual PM sources 

(outdoor wood boilers) using a paired-site design, with one 

site near the source of interest and a second site to measure 

background PM that had little or no influence from local PM 

sources. The work presented here uses the NYS-DOH 

paired-site concept of characterizing nearby (micro- to mid-

scale) sources separately from an elevated background on 

the neighborhood scale, but only requires a “background” 

site to be reasonably free (relative to the near-source site) 

from large and very local PM sources instead of being 

uninfluenced by local sources. This allows the background 

site to be located in the same airshed as the near-source site so 

that airshed-wide influences of local woodsmoke (e.g., a valley 

entrapping woodsmoke overnight) are properly accounted for 

and not attributed solely to the source of interest. 

Previous measurements and modeling of woodsmoke in 

several Adirondack communities in northeast New York 

observed strong diurnal variations and large differences in 

woodsmoke within villages compared to locations just outside 

of the same villages (Allen et al., 2011; Su et al., 2013). This 

study facilitates an improved understanding of the spatial 

and temporal variation of woodsmoke concentrations in a 

rural valley community, as well as the range of exposures to 

woodsmoke PM in these valleys where routine PM 

monitoring is not being done. These data may serve as a 

baseline for comparison as old technologies are switched 

out with new, more efficient and less polluting wood 

heating appliances. This study was designed specifically to 

characterize woodsmoke PM concentrations in various 

settings, especially in areas that are affected by relatively 

close sources as well as “valley background” concentrations 

(i.e., elevated concentrations that are not strongly influenced 

by large nearby sources). This information may be used to 

inform air planning and public health efforts or new 

initiatives such as woodstove changeout programs.  

 

METHODS 

 

Both mobile platform and fixed-site PM2.5 monitoring 

were performed during the winters of 2013–2014 and 2014–

2015 in Saranac Lake, NY, a village in the Adirondacks 

400 km north of New York City with a population of 

approximately 5,000 and no significant local industrial or 

traffic PM2.5 sources. While not in a traditional valley, the 

town is surrounded by hills on several sides. Fig. 1 shows 

the topography of the town and the approximate location of 

the three fixed monitoring sites. 

For the first winter, PM and wind speed and direction 

were only measured at one site (A). For the second winter, 

PM, wind, BC, and particle-bound PAH were measured at 

Site A for the full winter, and at Sites B and C for six or 

seven weeks each. PM monitoring using a mobile platform 

was performed during both winters in the evening on nights 

when forecasted wind speed and ambient temperature were 

low and would allow local woodsmoke to accumulate. 

Mobile platform results are presented here only for the first 

winter when these data were used to identify possible 

locations for fixed-site woodsmoke measurements. 

PM2.5 was measured for both the mobile platform and 

fixed-site monitoring with a Thermo Scientific (Franklin, MA) 

pDR-1500 monitor that uses 70° forward light scattering at 

880 nm as a highly time-resolved surrogate for PM (Wang 

et al., 2016; Zhang et al., 2018). 

A BGI (Waltham, MA) SCC0.732 cyclone was used for 

the pDR-1500 inlet with a sample flow of 1.0 L min–1, 

giving a D50 size cut of 2.5 µm. The instrument’s relative 

humidity correction was turned off, since the f(RH) correction 

curve it uses is based on hygroscopic aerosol such as sulfate 

and is not necessarily appropriate for woodsmoke PM (Martin 

et al., 2013). The data recording interval was 1 second for 

the mobile platform and 1 minute for fixed-site monitoring. 

The pDR-1500 has been shown to agree well with Federal 

Equivalent Method (FEM) monitors when sampling ambient 

PM that is predominantly woodsmoke from residential 

space heating. A Met One (Grants Pass, OR) BAM 1020 

PM2.5 FEM for PM2.5 and a pDR-1500 run in the same 

configuration as used in this study were collocated at the 

Vermont Department of Environmental Conservation’s central 

monitoring site in Rutland, VT, for the winter of 2011–

2012. Elevated levels of PM2.5 at this site during the winter 

are primarily from residential wood heating appliances 

(Allen et al., 2004). Agreement was very good over a wide 

range of PM2.5 concentrations (Zhang et al., 2017), with a 

slope of 1.08 and R2 of 0.90 for 24-hour average values. 

For the mobile platform, the PM inlet probe was 

positioned towards the front of the car 30 cm above the car 

roof. For fixed-site outdoor monitoring, the pDR-1500 was 

inside a heated enclosure (approximately 10°C above ambient 

temperature), with the PM inlet 2 meters above the ground. 

Wind speed, wind direction, and sonic temperature were 

measured every 10 seconds at fixed sites using a Gill 

(Lymington, Hampshire, UK) heated WindObserver II 

sonic anemometer. Sonic temperature was used as a quality 
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Fig. 1. Saranac Lake, NY; topography; and monitoring site locations. 

 

control check for the sonic wind data. 10-second raw wind 

measurements were processed up to 5-minute and 1-hour 

values for scalar wind speed and resultant wind vectors. 

In addition to PM2.5 and wind speed and direction, real-

time fixed-site measurements for the second year included 

BC and PAHs. A 2-channel Aethalometer®  Model AE-42 

(Magee Scientific, Berkeley, CA) sampling at 2 L min–1 

with a PM1.0 inlet cyclone (BGI SCC0.732) was used to 

measure black carbon (BC) at 880 and 370 nm at 1-minute 

intervals. Aethalometer data were corrected for filter loading 

artifacts using the binned approach described by Park (2010) 

and based on a method described by Virkkula (2007). The 

concentration difference between these two channels is 

called Delta-C (DC). This derived parameter can be used as 

a semi-quantitative measurement of the organic carbon 

(OC) component of woodsmoke PM, which dominates 

primary PM emissions from conventional cordwood stoves 

(Bertrand et al., 2017). DC is used here to demonstrate that 

elevated levels of PM2.5 were predominantly from woodsmoke 

(Allen et al., 2004; Wang et al., 2012; Olson et al., 2015; 

Zhang et al., 2017). In locations where woodsmoke dominates 

local PM2.5 concentrations, DC has been shown to be well 

correlated with levoglucosan, an organic molecular marker 

for woodsmoke PM (Hedberg et al., 2006; Wang et al., 

2011). Fig. 2 shows a robust comparison between 24-hour 

average DC and levoglucosan measured by the Monterey 

Bay Air Resource District (MBARD) in the San Lorenzo 

Valley, CA, during the winter of 2014–2015 (data courtesy 

of MBARD). This result demonstrates that DC is as good a 

woodsmoke marker as levoglucosan in areas that are 

dominated by woodsmoke. It has the advantage of being 

highly time-resolved, which allows additional analysis such 

as time-of-day patterns that can identify woodsmoke PM. It 

should be noted that while levoglucosan is very specific to 

PM from wood combustion, there can be situations where 

 

 

Fig. 2. DC vs. levoglucosan in the San Lorenzo Valley, CA, 

winter of 2014–2015. 
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other combustion sources of OC aerosol can contribute to 

the DC signal. Thus caution should be used when using DC 

as a woodsmoke indicator when there may be other large 

local sources of OC aerosol present. Domestic coal burning 

for heating has been shown to have levoglucosan and light-

absorbing “brown carbon” or BrC (Li et al., 2018; Yan et al., 

2018) but it is unlikely that coal is used much for domestic 

space heating in New York. In this paper we show that 

exhaust from 2-cycle snowmobile engines also contains 

BrC as measured by the Aethalometer DC. 

Continuous particle-bound PAHs were measured at 1-

minute intervals with EcoChem (League City, TX) PAS-2000 

analyzers with PM1.0 inlets at the fixed sites to investigate if 

this measurement was of use in identifying woodsmoke PM. 

This method is a semi-quantitative measurement of total 

particle-bound PAHs (Wilson et al., 1995), since the response 

depends on the kinds of PAHs present in the sample (Kelly 

et al., 2003). Ultraviolet light from a 222-nm excimer lamp 

ionizes particle-bound PAH molecules, and an electric field 

then removes the free electrons. The resulting positively 

charged particles are collected on a filter, generating a 

current that is measured by an electrometer. The PAH monitors 

were overhauled and calibrated by the manufacturer prior to 

use in this study. The instrument output is in femtoamperes 

(fA), and although this can be approximately scaled to mass 

of PAHs, fA is used as the measurement unit here to avoid 

confusion with quantitative measurements of PAHs. 1 fA is 

approximately 1–3 ng m–3 PAH mass (Wilson et al., 1995). 

 

RESULTS 

 

The mobile platform monitoring during the first winter 

showed multiple sites with elevated PM2.5 above the local 

background PM2.5 on many trips. An example of a typical 

evening’s measurements in Saranac Lake is shown in Fig. 3 

for January 9, 2014. The three fixed sites are noted, as are 

measurements made at the top of Mt. Pisgah, a 100-meter 

(above local terrain) hill just to the north of downtown 

Saranac Lake that is used as a background PM measurement 

away from local woodsmoke sources. PM2.5 in town varied 

over a wide range over short distances and peaked at over 

400 µg m–3 (5-second average). Such high concentrations in 

this rural area are indicative of local woodsmoke sources. 

Background PM2.5 (at Mt. Pisgah, on the north edge of the 

site map) was very low—less than 5 µg m–3. 

 

First Winter Fixed-site Monitoring 

During the first winter, a single fixed site (A) was deployed 

based on preliminary mobile platform results. Site A is 

located near the center of town in the backyard of a single-

family residence in a residential neighborhood. The residence 

used a pellet stove, but the monitor was sited away from the 

 

 

Fig. 3. 1-second mobile platform PM2.5 in Saranac Lake, January 9, 2014. 
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house by approximately 20 meters to the southeast to avoid 

being routinely impacted by that local woodsmoke source. 

PM2.5 was monitored from January 28 to May 7, 2014. 

Regional PM events were identified from local woodsmoke 

events by the daily temporal pattern of PM. Local woodsmoke 

has a strong diel pattern with peaks overnight and mid-day 

minimums (Jones et al., 2011). Regional PM events do not 

show these diel patterns. While there were many short-term 

(sub-daily duration) periods of elevated PM during this 

period, the running 24-hour PM average from several regional 

PM events was higher than most 24-hour average peaks 

from local woodsmoke, because woodsmoke PM is typically 

elevated for only about half the day (overnight), while 

regional PM can be elevated for one to two days at all times 

of the day. Fig. 4 shows an example of a multi-day regional 

PM2.5 event during mid-February 2014, with brief PM 

spikes from local woodsmoke superimposed on the regional 

PM2.5 that varies very slowly. 

The diel pattern of PM2.5 at Site A during the first winter 

(not shown) had the typical pattern of local woodsmoke PM 

(as shown in Fig. 11 from the second winter), with the 

highest PM in the evening to overnight and in the morning 

between 6 and 8 a.m. A mid-day minimum of 3 µg m–3 

occurred between 10 a.m. and 4 p.m. when atmospheric 

mixing and dispersion is greatest, and is an estimate of 

regional background PM2.5. 

The average PM2.5 concentration from January 28 to 

March 31, 2014, at Site A was 6.2 µg m–3. The median and 

95th percentile values for 1-hour average PM2.5 were 3.0 and 

23 µg m–3 respectively. 

 

Second Winter Fixed-site Monitoring 

During the second winter, fixed-site monitoring was 

again performed at Site A for the entire winter. Since this 

site had more than 4,000 hours of PM data when both 

winters are combined, weekend PM was compared to 

weekday PM to detect potential differences resulting from 

occupants usually being at home more on weekends. A 

Mann-Whitney rank sum test on hourly average values 

indicated the weekend and weekday median PM (6.5 and 

5.9 µg m–3 respectively) were not significantly different (p 

= 0.07). This suggests that space heating, not weekend 

recreational burning such as fireplaces, is the dominant use 

of wood burning. This is consistent with the lack of natural 

gas infrastructure in Saranac Lake, and in contrast to day-

of-the-week patterns in Rochester, NY (Wang et al., 2011), 

an urban area where residential wood combustion is more 

for recreational use than for domestic space heating due to 

the wide availability of natural gas. Fixed-site monitoring 

was also done at two additional sites (labeled B and C in 

Fig. 1) in Saranac Lake for at least six weeks each to provide 

information on spatial PM patterns and to characterize 

woodsmoke PM from sites near local sources. The residences 

at Sites B and C did not have any wood burning appliances. 

All three sites had the same instrumentation: pDR-1500 for 

PM2.5, 2-channel Aethalometer for BC and DC, EcoChem 

PAS-2000 for particle-bound PAH, and WindObserver II 

sonic anemometer for wind speed and direction. 

While no location in town was completely free from local 

woodsmoke impact, Site A was chosen to avoid large local 

sources. The two additional sites (B and C) were chosen for 

having significant local woodsmoke impacts based on 

mobile platform monitoring from the previous winter. Site 

B is 0.93 km WSW from Site A, and Site C is 1.5 km SSW 

of Site A. The distance between Sites B and C is 2.1 km. All 

three sites are in the same valley airshed and within the town 

limits. 

Table 1 lists the dates that monitoring was performed for 

each of the second-winter sites. 

Site B was adjacent to a residence with a wood stove 

40 meters to the south-southeast. While there were other 

sources of woodsmoke in that neighborhood, winds were 

 

 

Fig. 4. Regional PM event, February 14–16, 2014. 
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Table 1. Monitoring periods for second winter sites. 

Site Name Start Date Stop Date Number of Days 

A: full winter 16 Dec 2014* 13 Apr 2015 118 (104 to 31 Mar 2015) 

B: first half 9 Dec 2014** 26 Jan 2015 48 

C: second half 27 Jan 2015 12 Apr 2015 75 (63 to 31 Mar 2015) 
* Site A wind data start: 22 Dec 2014; ** Site B wind data start: 16 Dec 2014. 

 

predominately from the south to west, so this source 

dominated the measured PM at this site. Site C had several 

local sources of woodsmoke, but none that dominated the 

site as with Site B. 

The distributions of 1-hour PM2.5 for the two site pairs are 

shown in Fig. 5. While median concentrations are similar 

across all three sites, Site B had higher PM than the other 

two sites. 

Note that although the average PM2.5 for Site B exceeds 

the level of the annual NAAQS value of 12 µg m–3 for the 

48 winter days when sampling was performed, it is likely 

that the annual average PM2.5 at this site would be in 

compliance with the annual NAAQS since much of the year 

is free from woodsmoke influence. The 24-hour (“daily”) PM 

concentration for comparison to the NAAQS is calculated 

on a midnight-to-midnight basis; this tends to reduce the 

average 24-hour concentration since it splits an overnight 

PM event across two calendar days. Although the highest 

24-hour running average concentration was 64 µg m–3, when 

using this midnight-to-midnight daily metric, there were just 

two 24-hour periods that exceeded the daily PM-NAAQS 

of 35 µg m–3 for this 48-day period (46 and 37 µg m–3). 

Extrapolating that regulatory metric to the 4-month heating 

season of 120 days suggests that the site would experience 

five days with PM2.5 greater than 35 µg m–3. Since the form 

of the daily PM-NAAQS is the 98th percentile value, or 

seventh-highest for 365 days, this suggests that Site B 

would also likely be in compliance with the daily PM-

NAAQS. Thus currently, neither the annual nor the daily 

 

 

Fig. 5. Distributions of 1-hour PM2.5 for two site pairs. 

PM2.5 NAAQS provide protection from these kinds of 

seasonal episodic elevated PM concentrations. 

The maximum 1-hour and 3-hour PM2.5 concentrations at 

Site B were 400 and 150 µg m–3, respectively. Fig. 6 shows 

the 3-hour running average PM2.5 at Site B, with EPA Air 

Quality Index (AQI) breakpoints for the 2012 PM2.5 

NAAQS indicated by colored lines. While the 24-hour PM 

standard is 35 µg m–3, EPA uses the Nowcast method for 

real-time AQI reporting (U.S. EPA, 2018c). When hourly 

average PM2.5 levels are high and changing rapidly, the real-

time PM AQI is based on a 3-hour running average, and 

concentrations greater than 150 µg m–3 are reported as “very 

unhealthy” (purple AQI color). 

Hourly PM2.5 for Site B vs. Site A (N = 981, R2 = 0.10) 

and Site C vs. Site A (N = 1402, R2 = 0.33) during the 

second winter of monitoring is not well correlated. While 

there are some hours below 20–25 µg m–3 where PM for site 

pairs is similar (due to regional transport), there are 

relatively few hours where both sites are elevated. This 

decoupling at high PM concentrations demonstrates that 

very local PM sources dominate when PM is elevated. Since 

Site C does not have the large impact (next door, upwind) 

of a single local source that Site B has, the divergence at 

elevated PM levels is not as large at Site C as Site B. The 

influence of more spatially uniform concentrations is 

greater on the neighborhood scale (1–4 km) where PM is 

elevated due to regional transport, but not from a very local 

specific source or a regional event. This results in a higher 

R2 for Site C vs. Site A. Fig. 7 shows a 3-week interval in 

March 2015, where there are four overnight or early morning 

cases where PM measurements from Sites A and C track 

very closely. These cases are different from the regional PM 

event scenarios since the woodsmoke PM source is local 

(not regional transport) and peaks only during overnight or 

morning periods when wind speed is low and the valley 

entraps local woodsmoke. These examples also demonstrate 

that the PM measurements between these two sites are 

closely matched. 

 

Aethalometer DC Woodsmoke Indicator 

Aethalometer DC, a semi-quantitative measurement of 

woodsmoke PM, was used in this study to confirm that 

elevated levels of PM2.5 were primarily from woodsmoke. 

A useful approach to comparing DC and PM2.5 is shown in 

Fig. 8. Regression of the 24 hourly diel data pairs (PM vs. 

DC) shows strong correlation and a slope of 16 for Sites A 

and C. The slope for Site B is 25 (indicating less DC per unit 

PM) and correlation is not as strong, possibly because of the 

extremely high PM concentrations from a single wood stove 

where PM emissions are likely dominated by organic carbon 

(poor burn conditions that result in high PM are mostly 
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Fig. 6. Running 3-hour average PM2.5 at Site B. Colored lines indicate EPA AQI breakpoints for the 3-hour Nowcast. 

 

 

Fig. 7. 1-hour PM2.5 for Sites A and C, March 6–28, 2015. 
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Fig. 8. Regression of diel data pairs from Sites A, B, and C during the second winter of monitoring. 

 

organic carbon) instead of a mix of various woodsmoke 

sources that would be expected at most monitoring locations. 

The intercept for all three sites is between 3.0 and 4.4 µg m–3, 

and represents the average PM concentration when there is 

no local contribution from woodsmoke. 

 

Non-parametric Wind Regression Analysis for PM and 

DC 

Since Aethalometer DC is a reasonably specific marker 

for woodsmoke in this rural winter case, it can be used to 

directionally identify sources using 1-dimensional (wind 

direction only) non-parametric wind regression (NPWR) 

analysis (Henry et al., 2002; Henry et al., 2009). A scalar 

wind speed threshold of 0.45 m s–1 and a smoothing window 

of 8° was used. 2-dimensional (wind speed and direction) 

NPWR was not used due to the relatively small data set 

available for the analysis. The additional utility of 2-

dimensional wind regression may include characterization 

of the distance to local sources (Henry et al., 2002) and 

distinguishing elevated sources from those close to ground 

level (Henry et al., 2002; Yu et al., 2004); these were not of 

primary interest for this analysis.  

The NPWR approach to identifying the direction of major 

local sources of PM2.5 was validated using data from Site B, 

where a wood stove was next door, 40 meters to the south 

of the monitoring site. Site B had 984 hours with both wind 

(speed and direction) and PM data; 5-minute values were 

used to obtain a larger sample size (and thus smaller 

uncertainty estimates) in this analysis. Fig. 9(a) shows PM, 

BC, and DC NPWR analysis for Site B, as well as a wind 

rose for these data. Note that there were very few hours with 

winds from NW through N to SE, and thus NPWR results 

for those directions have very large uncertainties. The large 

next-door source shows a sharp peak at 160° in both PM2.5 

and DC, but not for BC. This would be consistent with a 

source of poor combustion where most of the PM is organic 

carbon. There is a suggestion of a small peak at ~212°, 

which is the direction of a commercial wood pellet boiler 

150 meters away, used to heat an elementary school. There 

are suggestions of other sources in directions with very few 

hours of data, and thus large uncertainties. An example of 

bootstrapped uncertainty estimates from this regression is 

shown in Fig. 9(b). 

Similar analysis was conducted for DC at Sites A and C, 

where local sources were not identified. Fig. 10 shows that 

for Site A there may have been a source to the east and 

southeast, but the uncertainty related to those directions is 

large since the wind did not come from that direction very 

often. For Site C, there does not appear to be any distinct 

source influencing PM at this site, consistent with a number 

of smaller woodsmoke sources at that location.  

 

Particle-bound PAHs from 2-Cycle Snowmobile Engines 

The particle-bound PAH data were not well correlated 

with PM or DC, and thus are not useful as a woodsmoke 

indicator. The diel pattern for PAHs at Site C showed an 

unusual temporal pattern that is not typical of woodsmoke 

or traffic PM emissions. Fig. 11 shows the diel pattern at 

this site for PM, BC, DC, and PAHs from January 27 to 

March 31, 2015, and a scatter plot of PAHs vs. DC for the 

diel values where the highest PAH concentrations have a 

much higher PAH-to-DC ratio. Examination of the raw data 

showed frequent elevated PM, BC, DC, and PAHs in the 

early evening, typically between 6 p.m. to 9 p.m. The Site C 

homeowner was queried about this pattern and reported that 

there were snowmobiles frequently used on an adjacent lot 
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(a) 

 
(b)  

 

Fig. 9. (a) PM, BC, and DC non-parametric wind regression analysis for Site B, December 16, 2014–January 26, 2015. 

(b) Non-parametric wind regression analysis 95% bootstrap confidence intervals for DC at Site B, December 16, 2014–

January 26, 2015. 

 

 

Fig. 10. DC non-parametric wind regression analysis for Sites A and C. 
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Fig. 11. Influence of snowmobile engine exhaust on PAHs and PM at Site C, and PAHs vs. DC scatter plot. 

 

at that time of day. The snowmobile-emitted PAH and BC 

peak is very evident for the three hours from 6 p.m. to 

9 p.m., superimposed on the expected woodsmoke diel 

pattern for DC and PM with minimums mid-day and peaks 

in the morning (at 7 a.m.) and late evening. 

DC is a measure of enhanced optical absorption at shorter 

wavelengths, a property usually associated primarily with 

biomass combustion as noted above. These results suggest 

that particle-bound PAHs from incomplete combustion of 

fossil fuels can have similar optical properties. To better 

characterize this response, a controlled test was performed 

to measure PM, BC, and DC for smoke from a small 2-cycle 

engine. A Thermo Scientific Model TEOM 1400ab and a 

Magee Scientific Aethalometer AE33 were used to measure 

the exhaust in an enclosed space from a pair of hand-held 

hedge trimmers that had been used by a local landscaping 

company. The engine was run for a few minutes until a 

concentration of approximately 1,000 µg m–3 of PM was 

reached, at which point the engines were turned off. 

Measurements continued for 55 minutes as infiltration, 

volatilization, and other particle losses reduced concentrations 

to ~20% of the peak. Fig. 12 shows PM, BC, and DC from 

this test. The PM-to-DC ratio for the 2-cycle engine exhaust 

testing is approximately 20, compared to a ratio of 15–25 

for PM to DC for woodsmoke in Saranac Lake. While these 

ratios are similar, it was the PAH data that suggested that 

some combustion particle source other than woodsmoke 

was routinely impacting this site for three hours from 6 to 

9 p.m., activity that was confirmed by contemporaneous 

conversations with the property owner for this site. 

There are some limitations of this controlled 2-cycle small 

engine experiment to quantitatively measure the PM-to-DC 

ratio from this source. These measurements were performed 

with much higher engine exhaust PM concentrations compared 

to the ambient measurements, and at a much higher 

temperature (+15°C compared to ~–17°C during the hours 

of interest). These competing differences in temperature and 

concentration, and thus vapor pressure, will affect the 

gas/particle partitioning of volatile organic compound (VOC) 

species and make a quantitative assessment of PM-to-DC 

ratio from this controlled testing difficult. In addition, other 

particle species present (wood smoke or regional PM) could 

provide condensation sites for the fresh semi-volatile 

organic compounds (SVOCs) from the snowmobiles. 

 

CONCLUSIONS 

 

Large spatial gradients in PM2.5 exist within the town of 

Saranac Lake in the Adirondacks in upstate New York. These 

gradients were characterized using a mobile monitoring 

platform, and three areas with elevated PM2.5 concentrations 

were subsequently selected for fixed-site monitoring of 

PM in woodsmoke. A paired-site monitoring approach 

demonstrated the influence of highly localized (micro- to 

mid-scale) sources of woodsmoke PM on neighborhood-

scale concentrations. The time of the day and event duration 

patterns differentiated transported PM (associated with 

regional events) from local emissions. 

Short-term PM concentrations from woodsmoke were 

observed that may pose risks to human health. For example, 
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Fig. 12. PM, BC, and DC from 2-cycle engine exhaust. 

 

one monitoring site that was situated next to a house with a 

wood stove repeatedly experienced periods of elevated PM, 

with the 1-hour and rolling 24-hour average concentrations 

reaching 400 and 64 µg m–3, respectively. Despite these high 

concentrations, we estimated that the PM levels at this site 

were in compliance with both the current daily and annual 

PM2.5-NAAQS. Based on the Aethalometer DC data, a 

biomass combustion indicator that displays good correlations 

with elevated levels of PM2.5, we estimated a non-woodsmoke 

winter background PM concentration of 3–4 µg m–3. Although 

the particle-bound PAH measurements were a poor indicator 

of the woodsmoke PM, at one of the sites they frequently 

exhibited distinct increases during the early evening because of 

the contribution from 2-cycle engine snowmobile exhaust. 

Controlled testing revealed that the PM-to-DC ratios per 

unit of PM for this exhaust were similar to those of fresh 

woodsmoke, suggesting that caution should be exercised 

when basing source apportionment of biomass burning PM 

on optical measurements of brown carbon in urban areas 

where motorized scooters with 2-cycle engines may be 

commonly used for intra-urban transportation. 
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