Special Issue on 2019 Asian Aerosol Conference (AAC)

Leo N.Y. Cao This email address is being protected from spambots. You need JavaScript enabled to view it.1, David Y.H. Pui2

1 Division of Complex Drug Analysis, US Food and Drug Administration, St. Louis, MO 63110, USA
2 Particle Technology Laboratory, University of Minnesota, Minneapolis, MN 55455, USA


Received: December 6, 2019
Revised: December 6, 2019
Accepted: February 3, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.2019.12.0621 

  • Download: PDF


Cite this article:

Cao, L.N. and Pui, D.Y. (2020). Real-time Measurements of Particle Geometric Surface Area by the Weighted Sum Method on a University Campus. Aerosol Air Qual. Res. 20: 1569–1581. https://doi.org/10.4209/aaqr.2019.12.0621


HIGHLIGHTS

  • Various online measurements of particle GSA on a university campus were conducted.
  • Events included laser printing, 3D printing, machining, and the ambient environment.
  • Overall Pearson correlation coefficient is 0.85 for the agreement of WS and SMPS.
  • The study offered a GSA concentration reference for future studies.
 

ABSTRACT


This study conducted field measurements of the particle geometric surface area (GSA) and number concentrations on a university campus via two real-time approaches: applying the weighted-sum (WS) method and using a Scanning Mobility Particle Sizer (SMPS). The measurements were conducted on 4 subjects: laser printing, 3D printing, machining (waterjet cutting, sanding, and welding), and environmental aerosols. The highest emissions were found with 3D printing and welding; these concentrations were measured in the printer’s enclosure and when the local exhaust ventilation was on, respectively. In general, the two methods agreed well with each other, with an overall Pearson correlation coefficient of 0.85, although the concentrations constantly fluctuated over a wide range, from 20 to 4 × 104 μm2 cm–3. Since the GSA concentrations reported in this study are the first measurements for some scenarios, our results can serve as a reference for further research as well as for individuals in the vicinity of these emissions.


Keywords: Geometric surface area; Real-time; Weighted sum; Occupational exposure; 3D printing emission.



REFERENCES


  1. Azimi, P., Zhao, D., Pouzet, C., Crain, N.E. and Stephens, B. (2016). Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ. Sci. Technol. 50: 1260–1268. [Publisher Site]

  2. Baldauf, R.W., Devlin, R.B., Gehr, P., Giannelli, R., Hassett-Sipple, B., Jung, H. and Walker, K. (2016). Ultrafine particle metrics and research considerations: review of the 2015 UFP workshop. Int. J. Environ. Res. Public Health 13: 1054. [Publisher Site]

  3. Bau, S., Witschger, O., Gensdarmes, F., Rastoix, O. and Thomas, D. (2010). A TEM-based method as an alternative to the BET method for measuring off-line the specific surface area of nanoaerosols. Powder Technol. 200: 190–201. [Publisher Site]

  4. Bau, S., Witschger, O., Gensdarmes, F. and Thomas, D. (2011). Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes. J. Phys. Conf. Ser. 304: 012015. [Publisher Site]

  5. Bourrous, S., Ribeyre, Q., Lintis, L., Yon, J., Bau, S., Thomas, D. and Ouf, F.X. (2018). A semi-automatic analysis tool for the determination of primary particle size, overlap coefficient and specific surface area of nanoparticles aggregates. J. Aerosol Sci. 126: 122–132. [Publisher Site]

  6. Brunauer, S., Emmett, P.H. and Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60: 309–319. [Publisher Site]

  7. Cao, L.N.Y., Wang, J., Fissan, H., Pratsinis, S.E., Eggersdorfer, M.L. and Pui, D.Y.H. (2015). The capacitance and charge of agglomerated nanoparticles during sintering. J. Aerosol Sci. 83: 1–11. [Publisher Site]

  8. Cao, L.N.Y., Chen, S.C., Fissan, H., Asbach, C. and Pui, D. Y.H. (2017). Development of a geometric surface area monitor (GSAM) for aerosol nanoparticles. J. Aerosol Sci. 114: 118–129. [Publisher Site]

  9. Cao, L.N.Y. and Pui, D.Y.H. (2018). A novel weighted sum method to measure particle geometric surface area in real-time. J. Aerosol Sci. 117: 11–23. [Publisher Site]

  10. Fierz, M., Burtscher, H., Steigmeier, P. and Kasper, M. (2008). Field measurement of particle size and number concentration with the diffusion size classifier (Disc). SAE Technical Paper 2008-01-1179. [Publisher Site]

  11. Fierz, M., Houle, C., Steigmeier, P. and Burtscher, H. (2011). Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci. Technol. 45: 1–10. [Publisher Site]

  12. Fierz, M., Meier, D., Steigmeier, P. and Burtscher, H. (2013). Aerosol measurement by induced currents. Aerosol Sci. Technol. 48: 350–357. [Publisher Site]

  13. Fissan, H., Neumann, S., Trampe, A., Pui, D.Y.H. and Shin, W.G. (2007). Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J. Nanopart. Res. 9: 53–59. [Publisher Site]

  14. Fissan, H., Asbach, C., Kaminski, H. and Kuhlbusch, T.A.J. (2012). Total surface area concentration measurements of nanoparticles in gases with an electrical sensor. Chem. Ing. Tech. 84: 365–372. [Publisher Site]

  15. Gäggeler, H.W., Baltensperger, U., Emmenegger, M., Jost, D.T., Schmidt-Ott, A., Haller, P. and Hofmann, M. (1989). The epiphaniometer, a new device for continuous aerosol monitoring. J. Aerosol Sci. 20: 557–564. [Publisher Site]

  16. Geiss, O., Bianchi, I. and Barrero-Moreno, J. (2016). Lung-deposited surface area concentration measurements in selected occupational and non-occupational environments. J. Aerosol Sci. 96: 24–37. [Publisher Site]

  17. Gini, M.I., Helmis, C.G. and Eleftheriadis, K. (2013). Cascade Epiphaniometer: An instrument for aerosol “Fuchs” surface area size distribution measurements. J. Aerosol Sci. 63: 87–102. [Publisher Site]

  18. He, C., Morawska, L. and Taplin, L. (2007). Particle Emission Characteristics of Office Printers. Environ. Sci. Technol. 41: 6039–6045. [Publisher Site]

  19. He, C., Morawska, L., Wang, H., Jayaratne, R., McGarry, P., Richard Johnson, G. and Ayoko, G. (2010). Quantification of the relationship between fuser roller temperature and laser printer emissions. J. Aerosol Sci. 41: 523–530. [Publisher Site]

  20. Hinds, W.C. (1999). Aerosol technology: Properties, behavior, and measurement of airborne particles. Wiley-Interscience, New York.

  21. Iavicoli, I., Fontana, L., Pingue, P., Todea, A.M. and Asbach, C. (2018). Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors. Sci. Total Environ. 627: 689–702. [Publisher Site]

  22. Jung, H. and Kittelson, D.B. (2005). Characterization of Aerosol Surface Instruments in Transition Regime. Aerosol Sci. Technol. 39: 902–911. [Publisher Site]

  23. Kim, Y., Yoon, C., Ham, S., Park, J., Kim, S., Kwon, O. and Tsai, P.J. (2015). Emissions of nanoparticles and Gaseous material from 3D printer operation. Environ. Sci. Technol. 49: 12044–12053. [Publisher Site]

  24. Ku, B.K. (2010). Determination of the ratio of diffusion charging-based surface area to geometric surface area for spherical particles in the size range of 100-900 nm. J. Aerosol Sci. 41: 835–847. [Publisher Site]

  25. Kuuluvainen, H., Poikkimäki, M., Järvinen, A., Kuula, J., Irjala, M., Dal Maso, M. and Rönkkö, T. (2018). Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon. Environ. Pollut. 241: 96–105. [Publisher Site]

  26. Lebouf, R.F., Stefaniak, A.B., Chen, B.T., Frazer, D.G. and Virji, M.A. (2011). Measurement of airborne nanoparticle surface area using a filter-based gas adsorption method for inhalation toxicology experiments. Nanotoxicology 5: 687–699. [Publisher Site]

  27. Li, L., Chen, D.R. and Tsai, P.J. (2009). Use of an electrical aerosol detector (EAD) for nanoparticle size distribution measurement. J. Nanopart. Res. 11: 111–120. [Publisher Site]

  28. Marra, J., Voetz, M. and Kiesling, H.J. (2010). Monitor for detecting and assessing exposure to airborne nanoparticles. J. Nanopart. Res. 12: 21–37. [Publisher Site]

  29. Mokhtar, M.A., Jayaratne, R., Morawska, L., Mazaheri, M., Surawski, N. and Buonanno, G. (2013). NSAM-derived total surface area versus SMPS-derived "mobility equivalent" surface area for different environmentally relevant aerosols. J. Aerosol Sci. 66: 1–11. [Publisher Site]

  30. Morawska, L., He, C., Johnson, G., Jayaratne, R., Salthammer, T., Wang, H. and Wensing, M. (2009). An investigation into the characteristics and formation mechanisms of particles originating from the operation of laser printers. Environ. Sci. Technol. 43: 1015–1022. [Publisher Site]

  31. Oberdörster, G. (2000). Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74: 1–8. [Publisher Site]

  32. Pandis, S.N., Baltensperger, U., Wolfenbarger, J.K. and Seinfeld, J.H. (1991). Inversion of aerosol data from the epiphaniometer. J. Aerosol Sci. 22: 417–428. [Publisher Site]

  33. Pirela, S.V., Martin, J., Bello, D. and Demokritou, P. (2017). Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs. Crit. Rev. Toxicol. 47: 678–704. [Publisher Site]

  34. Ramachandran, G., Paulsen, D., Watts, W. and Kittelson, D. (2005). Mass, surface area and number metrics in diesel occupational exposure assessment. J. Environ. Monit. 7: 728–735. [Publisher Site]

  35. Schmid, O. and Stoeger, T. (2016). Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 99: 133–143. [Publisher Site]

  36. Schripp, T., Wensing, M., Uhde, E., Salthammer, T., He, C. and Morawska, L. (2008). Evaluation of ultrafine particle emissions from laser printers using emission test chambers. Environ. Sci. Technol. 42: 4338–4343. [Publisher Site]

  37. Shen, S., Jaques, P.A., Zhu, Y., Geller, M.D. and Sioutas, C. (2002). Evaluation of the SMPS–APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5–10) concentrations. Atmos. Environ. 36: 3939–3950. [Publisher Site]

  38. Stephens, B., Azimi, P., El Orch, Z. and Ramos, T. (2013). Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79: 334–339.  [Publisher Site]

  39. Stone, V., Johnston, H. and Clift, M.J.D. (2007). Air Pollution, ultrafine and nanoparticle toxicology: Cellular and molecular interactions. IEEE Trans. Nanobiosci. 6: 331–340. [Publisher Site]

  40. Su, L., Ou, Q., Cao, L.N.Y., Du, Q. and Pui, D.Y.H. (2019a). A new instrument prototype to measure the geometric surface area of nanoparticles with a time resolution of 1s. J. Aerosol Sci. 132: 32–43.  [Publisher Site]

  41. Su, L., Ou, Q., Cao, L.N.Y., Du, Q. and Pui, D.Y.H. (2019b). Real-time measurement of nano-agglomerate and aggregate mass and surface area concentrations with a prototype instrument. Aerosol Sci. Technol. 53: 1453–1467. [Publisher Site]

  42. Todea, A.M., Beckmann, S., Kaminski, H. and Asbach, C. (2015). Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations. J. Aerosol Sci. 89: 96–109. [Publisher Site]

  43. Wang, H., He, C., Morawska, L., McGarry, P. and Johnson, G. (2012). Ozone-initiated particle formation, particle aging, and precursors in a laser printer. Environ. Sci. Technol. 46: 704–712. [Publisher Site]

  44. Wei, J. (2007). Development of a method for measuring surface area concentration of ultrafine particles. Ph.D. Thesis, University Duisburg-Essen, Germany.

  45. Wojtyła, S., Klama, P. and Baran, T. (2017). Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J. Occup. Environ. Hyg. 14: D80–D85. [Publisher Site]

  46. Zhang, Q., Wong, J.P.S., Davis, A.Y., Black, M.S. and Weber, R.J. (2017). Characterization of particle emissions from consumer fused deposition modeling 3D printers. Aerosol Sci. Technol. 51: 1275–1286. [Publisher Site]

  47. Zhang, Q., Sharma, G., Wong, J.P.S., Davis, A.Y., Black, M.S., Biswas, P. and Weber, R.J. (2018). Investigating particle emissions and aerosol dynamics from a consumer fused deposition modeling 3D printer with a lognormal moment aerosol model. Aerosol Sci. Technol. 52: 1099–1111. [Publisher Site]

Aerosol Air Qual. Res. 20:1569-1581. https://doi.org/10.4209/aaqr.2019.12.0621 

Latest Articles