Xiaoning Pei1,2, Rui Wang 1

Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China

Received: October 26, 2019
Revised: November 19, 2019
Accepted: November 19, 2019
Download Citation: ||https://doi.org/10.4209/aaqr.2019.10.0540 

  • Download: PDF

Cite this article:
Pei, X. and Wang, R. (2019). Desulfurization Performance of Rare Earth Mono-substituted Heteropoly Compounds. Aerosol Air Qual. Res. 19: 2888-2898. https://doi.org/10.4209/aaqr.2019.10.0540


  • Rare earth monosubstituted Dawson polyoxometalates were prepared and used.
  • Electrochemically regenerable K17[Pr(P2Mo17O61)2] was the best for de-H2S.
  • Under optimal conditions, sulfur removal efficiency 90% could be achieved.



In this study, a series of rare earth monosubstituted Dawson-type polyoxometalates were synthesized for highly effective removal of hydrogen sulfide (H2S). The unused, used and regenerated polyoxometalates were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results confirmed that K17[Pr(P2Mo17O61)2] could maintain a complete Dawson-type structure even after absorption and regeneration. H2S absorption study showed that K17[Pr(P2Mo17O61)2] had the remarkable desulfurization and regeneration capabilities. Optimization experiments showed that K17[Pr(P2Mo17O61)2] under the condition of low H2S concentration or high dosage of K17[Pr(P2Mo17O61)2] had the ideal desulfurization performance. An appropriate temperature of 25°C is necessary for high removal efficiency. The optimum pH value for desulfurization is 6.8. The desulfurization product was proved to be SO42–.

Keywords: Rare earth ion; Heteropoly compounds; H2S; Desulfurization

Impact Factor: 2.735

5-Year Impact Factor: 2.827

SCImago Journal & Country Rank

Enter your email below to receive latest published articles in your field.