Sidali Khedidji1,2, Konrad Müller3, Lyes Rabhi2,4, Gerald Spindler3, Khanneh Wadinga Fomba3, Dominik van Pinxteren3, Noureddine Yassaa This email address is being protected from spambots. You need JavaScript enabled to view it.2,5,6, Hartmut Herrmann This email address is being protected from spambots. You need JavaScript enabled to view it.3

 

1 Departments of Chemistry, University of Akli Mohand Oulhadj, Bouira 10000, Algeria
2 Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, 16111 Algiers, Algeria
3 Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
4 Unité de Recherche en Analyses et Développement Technologiques en Environnement-Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques UR-ADTE- CRAPC, BP 384, Zone industrielle RP, 42004 Bou Ismail, Tipaza, Algérie
5 Centre de Développement des Energies Renouvelables (CDER), BP 62, Route de l’Observatoire, Bouzaréah, Algiers, Algeria
6 Commissariat aux Energies Renouvelables et à l’Efficacité Energétique, CEREFE, 12 Rue Docteur Saâdane, Algiers, Algeria


 

Received: December 24, 2019
Revised: July 3, 2020
Accepted: July 26, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.4209/aaqr.2019.09.0458  


Cite this article:

Khedidji, S., Müller, K., Rabhi, L., Spindler, G., Fomba, K.W., Pinxteren, D.V., Yassaa, N. and Herrmann, H. (2020). Chemical Characterization of Marine Aerosols in a South Mediterranean Coastal Area Located in Bou Ismaïl, Algeria. Aerosol Air Qual. Res. 20: 2448–2473. https://doi.org/10.4209/aaqr.2019.09.0458


HIGHLIGHTS

  • Inorganics and SVOCs were measured in particulates from coastal area of Algiers.
  • Sulfate, nitrate and ammonium constitutes 65% of the totals of the ionic species.
  • Impact of anthropogenic sources was assessed by nss-SO42 and diagnostic ratios.
  • OC and EC sources showed the formation of secondary organic aerosols.
 

ABSTRACT


Daily concentrations of inorganic and organic compounds associated with PM10, i.e., atmospheric particulate matter with aerodynamic diameter of less than 10 µm, was determined at the south Mediterranean coastal area located in Bou Ismaïl, 40 km west of the Algiers city area in Algeria. From September 2011 to January 2012, chemical characterization of aerosol particles comprising water-soluble ions (WSI), trace metals, carbonaceous aerosols, the anhydrosugars levoglucosan and arabitol, dicarboxylic acids, and semi-volatile organic compounds (SVOC), i.e., alkanes, PAHs, and hopanes, was carried out by using a variety of analytical techniques. Overall, the concentrations of selected ionic species were similar to those reported at other Mediterranean sites, ranging from 3.62 µg m–3 to 5.20 µg m–3 for the monthly total WSI. Sulfate was the most abundant ion. The total concentrations of semi-volatile organic compounds (SVOC) recorded in Bou Ismaïl ranged from 7.06 to 58.8 ng m–3 for n-alkanes, from 2.44 to 35.3 ng m–3 for polycyclic aromatic hydrocarbons (PAHs), from 0.14 to 1 ng m–3 for hopanes, and from 0.67 to 13.2 ng m–3 for n-alkan-2-one. In order to reconcile species concentrations and their emission sources, sampling days were grouped into two categories according to air mass origin. In the first group, the aerosol particles were mainly of a marine origin, while those of the second group originated in the dust sector. A source analysis of total contents organic compounds (PAHs, alkanes, hopanes, and alkanones) and individual inorganic compounds by spearman rank correlation illustrated that the principal sources consisted of sea salt, secondary aerosol, and biomass burning. Additionally, PM10 constituent diagnostic ratios and the carbon preference index (CPI) for n-alkanes indicated the importance of anthropogenic emissions.


Keywords: PM10; Ions; SVOC; PAHs; Anthropogenic sources.



REFERENCES


  1. Assami, K., Ladji, R., Moussaoui, Y., Yassaa, N. and Meklati, B.Y. (2018). Influence of car body repair activities on particulate matter pollution in a suburban area (Bouzaréah City, Algiers). Int. J. Environ. Sci. Technol. 15: 1019–1028. [Publisher Site]

  2. Balducci, C., Ladji, R., Muto, V., Romagnoli, P., Yassaa, N. and Cecinato, A. (2014). Biogenic and anthropogenic organic components of Saharan sands. Chemosphere 107: 129–135. [Publisher Site]

  3. Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A. and Puxbaum, H. (2008). Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos. Environ. 42: 588–593. [Publisher Site]

  4. Benchrif, A., Guinot, B., Bounakhla, M., Cachier, H., Damnati, B. and Baghdad, B. (2018). Aerosols in Northern Morocco: Input pathways and their chemical fingerprint. Atmos. Environ. 174: 140–147. [Publisher Site]

  5. Birch, M.E. and Cary, R.A. (1996). Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25: 221–241. [Publisher Site]

  6. Birmili, W., Allen, A.G., Bary, F. and Harrison, R.M. (2006). Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environ. Sci. Technol. 40: 1144–1153. [Publisher Site]

  7. Borgese, L., Salmistraro, M., Gianoncelli, A., Zacco, A., Lucchini, R., Zimmerman, N., Pisani, L., Siviero, G., Depero, L.E. and Bontempi, E. (2012). Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW). Talanta 89: 99–104. [Publisher Site]

  8. Bressi, M., Sciare, J., Ghersi, V., Bonnaire, N., Nicolas, J.B., Petit, J.E., Moukhtar, S., Rosso, A., Mihalopoulos, N. and Féron, A. (2013). A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France). Atmos. Chem. Phys. 13: 7825–7844. [Publisher Site]

  9. Cecinato, A., Guerriero, E., Balducci, C. and Muto, V. (2014). Use of the PAH fingerprints for identifying pollution sources. Urban Clim. 10: 630–643. [Publisher Site]

  10. Cheng, M.C., You, C.F., Cao, J. and Jin, Z. (2012). Spatial and seasonal variability of water-soluble ions in PM2.5 aerosols in 14 major cities in China. Atmos. Environ. 60: 182–92. [Publisher Site]

  11. Collins, J.F., Brown, J.P., Alexeeff, G.V. and Salmon, A.G. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul. Toxicol. Pharm. 28: 45–54. [Publisher Site]

  12. Contini, D., Belosi, F., Gambaro, A., Cesari, D., Stortini, A.M. and Bove, M.C. (2012). Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: An analysis of possible aerosol sources. J. Environ. Sci. 24: 1954–1965. [Publisher Site]

  13. Custódio, D., Cerqueira. M., Alves, C., Nunes, T., Pio, C., Esteves, V., Frosini, D., Lucarelli, F. and Querol, X. (2016). A one-year record of carbonaceous components and major ions in aerosols from an urban kerbside location in Oporto, Portugal. Sci. Total Environ. 562: 822–833. [Publisher Site]

  14. del Rosario Sienra, M., Rosazza, N.G. and Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmos. Res. 75: 267–281. [Publisher Site]

  15. Deshmukh, D.K., Deb, M.K., Suzuki, Y. and Kouvarakis, G.N. (2013). Water-soluble ionic composition of PM2.5–10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern central India. Air Qual. Atmos. Health 6: 95–110. [Publisher Site]

  16. Di Vaio, P., Cocozziello, B., Corvino, A., Fiorino, F., Frecentese, F., Magli, E., Onorati, G., Saccone, I., Santagada, V., Settimo, G., Severino, B. and Perissutti, E. (2016) Level, potential sources of Polycyclic Aromatic Hydrocarbons (PAHs) in particulate matter (PM10) in Naples. Atmos. Environ. 129: 186–196. [Publisher Site]

  17. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe 152: 1–44.

  18. Draxler, R.R. and Rolph, G.D. (2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model. NOAA Air Resources Laboratory, [Website Link]

  19. Ebert, M., Weinbruch, S., Hoffmann, P. and Ortner, H.M. (2000). Chemical characterization of North Sea aerosol particles. J. Aerosol Sci. 31:613–632. [Publisher Site]

  20. El Haddad, I., Marchand, N., Dron, J., Temime-Roussel, B., Quivet, E., Wortham, H., Jaffrezo, J.L., Baduel, C., Voisin, D., Besombes, J.L. and Gille, G. (2009). Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France. Atmos. Environ. 43: 6190–6198. [Publisher Site]

  21. Fomba, K.W., Müller, K., van Pinxteren, D. and Herrmann, H. (2013). Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde islands. Atmos. Chem. Phys. 13: 4801–4814. [Publisher Site]

  22. Fomba, K.W., Pinxteren, D. van Müller, K., Spindler, G. and Herrmann, H. (2018). Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmos. Environ. 176: 60–70. [Publisher Site]

  23. Fu, P.Q., Kawamura, K., Pavuluri, C.M., Swaminathan, T. and Chen, J. (2010). Molecular characterization of urban organic aerosol in tropical India: Contributions of primary emissions and secondary photooxidation. Atmos. Chem. Phys. 10: 2663–2689. [Publisher Site]

  24. Fu, P., Kawamura, K., Kobayashi, M. and Simoneit, B.R.T. (2012). Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. Atmos. Environ. 55: 234–239. [Publisher Site]

  25. Fu, P., Zhuang, G., Sun, Y., Wang, Q., Chen, J., Ren, L., Yang, F., Wang, Z., Pan, X., Li, X. and Kawamura, K. (2016). Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. Atmos. Environ. 130: 64–73. [Publisher Site]

  26. Galindo, N., Yubero, E., Nicolás, J.F., Crespo, J., Varea, M. and Gil-Moltó, J. (2017). Regional and long-range transport of aerosols at Mt. Aitana, Southeastern Spain. Sci. Total Environ. 584–585: 723–730. [Publisher Site]

  27. Han, Y.M., Lee, S.C., Cao, J.J., Ho, K.F. and An, Z.S. (2009). Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmos. Environ. 43: 6066–6073. [Publisher Site]

  28. Hays, M.D., Fine, P.M., Geron, C.D., Kleeman, M.J. and Gullett, B.K. (2005). Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmos. Environ. 39: 6747–6764. [Publisher Site]

  29. He, J., Zielinska, B. and Balasubramanian, R. (2010). Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: Influence of biomass burning. Atmos. Chem. Phys. 10: 11401–11413. [Publisher Site]

  30. Hu, H., Tian, M., Zhang, L., Yang, F., Peng, C., Chen, Y., Shi, G., Yao, X., Jiang, C. and Wang, J. (2019). Sources and gas-particle partitioning of atmospheric parent, oxygenated, and nitrated polycyclic aromatic hydrocarbons in a humid city in southwest China. Atmos. Environ. 206: 1–10. [Publisher Site]

  31. Iinuma, Y., Engling, G., Puxbaum, H. and Herrmann, H. (2009). A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol. Atmos. Environ. 43: 1367–1371. [Publisher Site]

  32. International Agency for Research on Cancer (IARC) (1987). IARC monographs on the evaluation of carcinogenic risks to humans, Supplement 7, Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42, Lyon.

  33. International Agency for Research on Cancer (IARC) (2005). IARC Handbooks of Cancer Prevention Volume 10: Cervix Cancer Screening. International Agency for Research on Cancer, IARCpress.

  34. Kavouras, I.G. (2002). Particle size distribution of organic primary and secondary aerosol constituents in urban, background marine, and forest atmosphere. J. Geophys. Res. 107. [Publisher Site]

  35. Kawamura, K. and Sakaguchi, F. (1999). Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J. Geophys. Res. 104: 3501–3509. [Publisher Site]

  36. Kawamura, K. and Bikkina, S. (2016). A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmos. Res. 170: 140–160. [Publisher Site]

  37. Kelly, F.J. and Fussell, J.C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60: 504–526. [Publisher Site]

  38. Khedidji, S., Ladji, R. and Yassaa, N. (2013). A wintertime study of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a big student residence in Algiers, Algeria. Environ. Sci. Pollut. Res. 20: 4906–4919. [Publisher Site]

  39. Khedidji, S., Balducci, C., Ladji, R., Cecinato, A., Perilli, M. and Yassaa, N. (2017). Chemical composition of particulate organic matter at industrial, university and forest areas located in Bouira province, Algeria. Atmos. Pollut. Res. 8: 474–482. [Publisher Site]

  40. Kumar, A., Sarin, M.M and Sudheer, A.K. (2008). Mineral and anthropogenic aerosols in Arabian Sea–atmospheric boundary layer: Sources and spatial variability. Atmos. Environ. 42: 5169–5181. [Publisher Site]

  41. Ladji, R., Yassaa, N., Balducci, C., Cecinato, A. and Meklati, B.Y. (2009a). Annual variation of particulate organic compounds in PM10 in the urban atmosphere of Algiers. Atmos. Res. 92: 258–269. [Publisher Site]

  42. Ladji, R., Yassaa, N., Balducci, C., Cecinato, A. and Meklati, B.Y. (2009b) Distribution of the solvent-extractable organic compounds in fine (PM1) and coarse (PM1–10) particles in urban, industrial and forest atmospheres of Northern Algeria. Sci. Total Environ. 408: 415–424. [Publisher Site]

  43. Ladji, R., Yassaa, N., Balducci, C. and Cecinato, A. (2014). Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHS) in urban and industrial aerosol of Algiers, Algeria. Environ. Sci. Pollut. Res. 21: 1819–1832. [Publisher Site]

  44. Legrand, M., Preunkert, S., Oliveira, T., Pio, C.A., Hammer, S., Gelencsér, A., Kasper-Giebl, A. and Laj, P. (2007). Origin of C2–C5 dicarboxylic acids in the European atmosphere inferred from year-round aerosol study conducted at a west-east transect. J. Geophys. Res. 112: D23S07. [Publisher Site]

  45. Li, J., Peng, X., Zhou, H., Li, J., Chen, S., Wu, Z. and Yao, H. (2012). Characteristics and source of polycyclic aromatic hydrocarbons in the surface hydrothermal sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges. Geochem. J. 46: 31–43. [Publisher Site]

  46. Li, L., Yin, Y., Kong, S., Wen, B., Chen, K., Yuan, L. and Li, Q. (2014). Altitudinal effect to the size distribution of water soluble inorganic ions in PM at Huangshan, China. Atmos. Environ. 98: 242–252. [Publisher Site]

  47. Li, W., Peng, Y. and Bai, Z. (2010). Distributions and sources of n-alkanes in PM2.5 at urban, industrial and coastal sites in Tianjin, China. J. Environ. Sci. 22: 1551–1557. [Publisher Site]

  48. Li, X., Wang, L., Ji, D., Wen, T., Pan, Y., Sun, Y. and Wang, Y. (2013). Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources. Atmos. Environ. 77: 250–259. [Publisher Site]

  49. Liang, C.S., Duan, F.K., He, K.B. and Ma, Y.L. (2016a). Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environ. Int. 86: 150–170. [Publisher Site]

  50. Liang, L., Engling, G., Du, Z., Cheng, Y., Duan, F., Liu, X. and He, K. (2016b). Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China. Chemosphere 150: 365–377. [Publisher Site]

  51. Lippmann, M. and Chen, L.C. (2009). Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit. Rev. Toxicol. 39: 865–913. [Publisher Site]

  52. Meng, C.C., Wang, L.T., Zhang, F.F., Wei, Z., Ma, S.M., Ma, X. and Yang, J. (2016). Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China. Atmos. Res. 171: 133–146. [Publisher Site]

  53. Morales, J.A., Pirela, D., Nava, M.G. de Borrego, B.S. de Velásquez, H. and Durán, J. (1998). Inorganic water soluble ions in atmospheric particles over Maracaibo Lake Basin in the western region of Venezuela. Atmos. Res. 46: 307–320. [Publisher Site]

  54. Müller, K., Lehmann, S., van Pinxteren, D., Gnauk, T., Niedermeier, N., Wiedensohler, A. and Herrmann, H. (2010). Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive. Atmos. Chem. Phys. 10: 2709–2721. [Publisher Site]

  55. National Institute for Occupational Safety and Health (NIOSH) (1998). NIOSH method 5040. In NIOSH manual of analytical methods (NMAM), 4th ed., 2nd supplement edited by Cassinelli, M.E., O’Connor, P.F., supplement to DHHS (NIOSH) publication, pp. 94–113.

  56. Oliveira, R.L., Loyola, J., Minho, A.S., Quiterio, S.L., de Almeida Azevedo, D. and Arbilla, G. (2014). PM2.5-bound polycyclic aromatic hydrocarbons in an area of Rio de Janeiro, Brazil impacted by emissions of light-duty vehicles fueled by ethanol-blended gasoline. Bull. Environ. Contam. Toxicol. 93: 781–786. [Publisher Site]

  57. Oros, D.R. and Simoneit, B.R.T. (2000). Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 79: 515–536. [Publisher Site]

  58. Öztürk, F., Zararsız, A., Dutkiewicz, V.A., Husain, L., Hopke, P.K. and Tuncel, G. (2012). Temporal variations and sources of Eastern Mediterranean aerosols based on a 9-year observation. Atmos. Environ. 61: 463–475. [Publisher Site]

  59. Pathak, R.K., Wang, T., Ho, K.F. and Lee, S.C. (2011). Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmos. Environ. 45: 318–325. [Publisher Site]

  60. People’s Democratic Republic of Algeria (2006) Executive Decree No 06–02 of 07 January 2006, page 3, defining value limits, alert thresholds and air quality objectives in case of atmospheric pollution in Algeria (in French) People’s Democratic Republic of Algeria.

  61. Perrone, M.G., Vratolis, S., Georgieva, E., Török, S., Šega, K., Veleva, B., Osán, J., Bešlić, I., Kertész, Z., Pernigotti, D., Eleftheriadis, K. and Belis, C.A. (2018). Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci. Total Environ. 619–620: 1515–1529. [Publisher Site]

  62. Pey, J., Querol, X. and Alastuey, A. (2010). Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmos. Environ. 44: 1587–1596. [Publisher Site]

  63. Pey, J., Pérez, N., Cortés, J., Alastuey, A. and Querol, X. (2013) Chemical fingerprint and impact of shipping emissions over a western Mediterranean metropolis: Primary and aged contributions. Sci. Total Environ. 463–464: 497–507. [Publisher Site]

  64. Pietrogrande, M.C., Perrone, M.R., Manarini, F., Romano, S., Udisti, R. and Becagli, S. (2018). PM10 oxidative potential at a Central Mediterranean Site: Association with chemical composition and meteorological parameters. Atmos. Environ. 188: 97–111. [Publisher Site]

  65. Pio, C.A., Alves, C.A. and Duarte, A.C. (2001). Identification, abundance and origin of atmospheric organic particulate matter in a Portuguese rural area. Atmos. Environ. 35: 1365–1375. [Publisher Site]

  66. Putaud, J.P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M.C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., … Wiedensohler, A. (2004). A European aerosol phenomenology 2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38: 2579–2595. [Publisher Site]

  67. Quinn, P.K. (2004). Aerosol optical properties measured on board the Ronald H. Brown during ACE-Asia as a function of aerosol chemical composition and source region. J. Geophys. Res. 109: D19S01. [Publisher Site]

  68. Quiterio, S.L., Arbilla, G., Bauerfeldt, G.F. and Moreira, J.C. (2007). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in airborne particles (PM10) collected in Rio de Janeiro, Brazil. Water Air Soil Pollut. 179: 79–92. [Publisher Site]

  69. Rabhi, L., Lemou, A., Cecinato, A., Balducci, C., Cherifi, N., Ladji, R. and Yassaa, N. (2018). Polycyclic aromatic hydrocarbons, phthalates, parabens and other environmental contaminants in dust and suspended particulates of Algiers, Algeria. Environ. Sci. Pollut. Res. 25: 24253–24265. [Publisher Site]

  70. Reche, C., Viana, M., Amato, F., Alastuey, A., Moreno, T., Hillamo, R., Teinilä, K., Saarnio, K., Seco, R., Peñuelas, J., Mohr, C., Prévôt, A.S.H. and Querol, X. (2012). Biomass burning contributions to urban aerosols in a coastal Mediterranean City. Sci. Total Environ. 427–428: 175–190. [Publisher Site]

  71. Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Fuzzi, S., Ceburnis, D., O’Dowd, C.D., Sciare, J., Burrows, J.P., Vrekoussis, M., Ervens, B., Tsigaridis, K. and Facchini, M.C. (2011). Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. J. Geophys. Res. 116: D16204. [Publisher Site]

  72. Romagnoli, P., Balducci, C., Perilli, M., Perreca, E. and Cecinato, A. (2016). Particulate PAHs and n-alkanes in the air over Southern and Eastern Mediterranean Sea. Chemosphere 159: 516–525. [Publisher Site]

  73. Russell, M. and Allen, D.T. (2004). Seasonal and spatial trends in primary and secondary organic carbon concentrations in southeast Texas. Atmos. Environ. 38: 3225–3239. [Publisher Site]

  74. Sánchez de la Campa, A.M., de la Rosa, J., González-Castanedo, Y., Fernández-Camacho, R., Alastuey, A., Querol, X., Stein, A.F., Ramos, J.L., Rodríguez, S., Orellana, I.G. and Nava, S. (2011). Levels and chemical composition of PM in a city near a large Cu-smelter in Spain. J. Environ. Monit. 13: 1276. [Publisher Site]

  75. Satsangi, P.G., Yadav, S., Pipal, A.S. and Kumbhar, N. (2014). Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmos. Environ. 92: 384–393. [Publisher Site]

  76. Scaramboni, C., Urban, R.C., Lima-Souza, M., Nogueira, R.F.P., Cardoso, A.A., Allen, A.G. and Campos, M.L.A.M. (2015). Total sugars in atmospheric aerosols: An alternative tracer for biomass burning. Atmos. Environ. 100: 185–192. [Publisher Site]

  77. Schauer, J.J., Kleeman, M.J., Cass, G.R. and Simoneit, B.R.T. (2002). Measurement of emissions from air pollution sources. 4. C1-C27 organic compounds from cooking with seed oils. Environ. Sci. Technol. 36: 567–575. [Publisher Site]

  78. Scheinhardt, S., Spindler, G., Leise, S., Müller, K., Iinuma, Y., Zimmermann, F., Matschullat, J. and Herrmann, H. (2013). Comprehensive chemical characterisation of size-segregated PM10 in Dresden and estimation of changes due to global warming. Atmos. Environ. 75: 365–373. [Publisher Site]

  79. Seinfeld, J.H. and Pandis, S.N. (1998). Atmospheric Chemistry and Physics: From air pollution to climate change. John Wiley & Sons.

  80. Simoneit, B.R.T. (1984). Organic Matter of the Troposphere III. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western united states. Atmos. Environ. 1967 18: 51–67. [Publisher Site]

  81. Simoneit, B.R.T., Sheng, G., Chen, X., Fu, J., Zhang, J. and Xu, Y. (1991). Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmos. Environ. 25: 2111–2129. [Publisher Site]

  82. Spindler, G., Gnauk, T., Grüner, A., Iinuma, Y., Müller, K., Scheinhardt, S. and Herrmann, H. (2012). Size-segregated characterization of PM10 at the EMEP site Melpitz (Germany) using a five-stage impactor: A six year study. J. Atmos. Chem. 69: 127–157. [Publisher Site]

  83. Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 5: 169–195. [Publisher Site]

  84. Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang, Z. and Hao, Z. (2004). The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmos. Environ. 38: 5991–6004. [Publisher Site]

  85. Tang, X.B., Huang, C., Lou, S.R., Qiao, L.P., Wang, H.L., Zhou, M., Chen, M., Chen, C.H., Wang, Q., Li, G.L., Li, L., Huang, H.Y. and Zhang, G.F. (2014). Emission factors and PM chemical composition study of biomass burning in the Yangtze River Delta region. Huan Jing Ke Xue Huanjing Kexue 35: 1623—1632.

  86. United States Environmental Protection Agency (U.S. EPA) (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons, EPA/600/R-93/089. United States Environmental Protection Agency.

  87. van Pinxteren, D., Neusüß, C. and Herrmann, H. (2014). On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe. Atmos. Chem. Phys. 14: 3913–3928. [Publisher Site]

  88. van Pinxteren, M., Fiedler, B., van Pinxteren, D., Iinuma, Y., Körtzinger, A. and Herrmann, H. (2015). Chemical characterization of sub-micrometer aerosol particles in the tropical Atlantic Ocean: Marine and biomass burning influences. J. Atmos. Chem. 72: 105–125. [Publisher Site]

  89. Viana, M., Pandolfi, M., Minguillón, M.C., Querol, X., Alastuey, A., Monfort, E. and Celades, I. (2008). Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. Atmos. Environ. 42: 3820–3832. [Publisher Site]

  90. Vicente, A., Alves, C., Monteiro, C., Nunes, T., Mirante, F., Cerqueira, M., Calvo, A. and Pio, C. (2012). Organic speciation of aerosols from wildfires in central Portugal during summer 2009. Atmos. Environ. 57: 186–196. [Publisher Site]

  91. Waked, A., Afif, C., Formenti, P., Chevaillier, S., El-Haddad, I., Doussin, J.F., Borbon, A. and Seigneur, C. (2014). Characterization of organic tracer compounds in PM2.5 at a semi-urban site in Beirut, Lebanon. Atmos. Res. 143: 85–94. [Publisher Site]

  92. Wang, G., Kawamura, K., Xie, M., Hu, S., Gao, S., Cao, J., An, Z. and Wang, Z. (2009). Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmos. Chem. Phys. 9: 8869–8882. [Publisher Site]

  93. Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S. and Zheng, A. (2005). The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 39: 3771–3784. [Publisher Site]

  94. Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J. and An, Z. (2006). The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos. Environ. 40: 2935–2952. [Publisher Site]

  95. World Health Organization (WHO) (2006). Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, Geneva.

  96. Xiang, P., Zhou, X., Duan, J., Tan, J., He, K., Yuan, C., Ma, Y. and Zhang, Y. (2017). Chemical characteristics of water-soluble organic compounds (WSOC) in PM2.5 in Beijing, China: 2011–2012. Atmos. Res. 183: 104–112. [Publisher Site]

  97. Yassaa, N. and Cecinato, A. (2005). Composition of torched crude oil organic particulate emitted by refinery and its similarity to atmospheric aerosol in the surrounding area. Chemosphere 60: 1660–1666. [Publisher Site]

  98. Yassaa, N., Youcef, B.M., Cecinato, A. and Marino, F. (2001a). Chemical characteristics of organic aerosol in Bab-Ezzouar (Algiers). Contribution of bituminous product manufacture. Chemosphere 45: 315–322. [Publisher Site]

  99. Yassaa, N., Youcef, B.M., Cecinato, A. and Marino, F. (2001b). Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. Atmos. Environ. 35: 1843–1851. [Publisher Site]

  100. Yin, L., Niu, Z., Chen, X., Chen, J., Zhang, F. and Xu, L. (2014). Characteristics of water-soluble inorganic ions in PM2.5 and PM2.5–10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China. Environ. Sci. Pollut. Res. 21: 5141–5156. [Publisher Site]

  101. Yue, Z.W. and Fraser, M.P. (2004). Characterization of nonpolar organic fine particulate matter in houston, texas special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci. Technol. 38:60–67. [Publisher Site]

  102. Zhao, X.J., Zhao, P.S., Xu, J., Meng, W., Pu, W.W., Dong, F., He, D. and Shi, Q.F. (2013). Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 13: 5685–5696. [Publisher Site]

  103. Zhao, Y. and Gao, Y. (2008). Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmos. Environ. 42: 4063–4078. [Publisher Site]

  104. Zhou, J., Xing, Z., Deng, J. and Du, K. (2016). Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmos. Environ. 135: 20–30. [Publisher Site]

  105. Zhu, C.S., Cao, J.J., Tsai, C.J., Shen, Z.X., Han, Y.M., Liu, S.X. and Zhao, Z.Z. (2014). Comparison and implications of PM2.5 carbon fractions in different environments. Sci. Total Environ. 466–467: 203–209. [Publisher Site]

  106. Zhu, J., Hsu, C.Y., Chou, W.C., Chen, M.J., Chen, J.L., Yang, T.T., Wu, Y.S. and Chen, Y.C. (2019). PM2.5- and PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the residential area near coal-fired power and steelmaking plants of Taichung City, Taiwan: In vitro-based health risk and source identification. Sci. Total Environ. 670: 439–447. [Publisher Site]

Aerosol Air Qual. Res. 20 :2448 -2473 . https://doi.org/10.4209/aaqr.2019.09.0458  

Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.