Xiaodi Liu1, Jingjing Meng 1,2, Zhanfang Hou1,2, Li Yan3, Gehui Wang2,4, Yanan Yi1, Benjie Wei1, Mengxuan Fu1, Jianjun Li2, Junji Cao2


School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China
Chinese Academy for Environmental Planing, Beijing 100012, China
Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200062, China



Received: August 30, 2019
Revised: September 24, 2019
Accepted: September 25, 2019
Download Citation: ||https://doi.org/10.4209/aaqr.2019.08.0418  

  • Download: PDF


Cite this article:
Liu, X., Meng, J., Hou, Z., Yan, L., Wang, G., Yi, Y., Wei, B., Fu, M., Li, J. and Cao, J. (2019). Molecular Compositions and Sources of Organic Aerosols from Urban Atmosphere in the North China Plain during the Wintertime of 2017. Aerosol Air Qual. Res. 19: 2267-2280. https://doi.org/10.4209/aaqr.2019.08.0418


Highlights

  • A significant impact of fireworks on PAHs, saccharides, and fatty acids.
  • An enrichment of the ILCR per 100,000 exposed children and adults on haze days.
  • The more oxidized of aerosols in the haze period than that in the clean period.

ABSTRACT


PM2.5 samples were collected from Liaocheng, a typical city in the North China Plain, during a winter haze episode around 2017 Chinese Spring Festival (Lunar New Year, LNY) to investigate the impact of firework on organic aerosols. A comparison of PM2.5 concentrations during different periods, with different air mass origins, and under different pollution situations was done. Organic compounds including normal alkanes (n-alkanes), polycylic aromatic hydrocarbons (PAHs), saccharides, and organic acids in PM2.5 aerosols were determined by GC/MS. Sources were analyzed by diagnostics ratios and principal component analysis/multiple linear regression (PCA/MLR) model. The results showed that fireworks burning has significant impacts on fine particle pollution. During the haze period, a sharp increase in n-alkanes, PAHs, saccharides, and fatty acids were observed, but the influence of fireworks burning on n-alkanes concentration is minor. The concentrations of carcinogenic PAHs during haze and LNY periods were more than three times higher than those in the clean period, indicating that PAHs were more carcinogenic during the two periods. In addition, the estimated ILCR for children and adults were both about three times higher than those in the clean periods, suggesting a moderate potential carcinogenic risk in Liaocheng. The higher concentration and the dominance of levoglucoan in the total saccharides suggested that the biomass burning is the predominance source of saccharides. Both the ratios of C18:1/C18:0 and BaP/BeP were the highest during the haze period, indicating that aerosols in the haze period were more oxidized. According to the source precise molecular tracers and the PCA-MLR model, coal combustion, biomass burning, and vehicle emissions were the major sources of organic compounds in PM2.5 aerosols during the winter in Liaocheng, cooking activity and firework burning had impact on organic aerosols obviously during LNY. Our data provided first analysis of the molecular distributions and sources of organic aerosols during Chinese Spring Festival in Liaocheng and their potential effects on human health.


Keywords: Organic compounds; PM2.5; Fireworks burning; Source identification; Health risk.

 



Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank