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ABSTRACT 

 
An accurate depiction of temporal and spatial variations in emissions is critical in simulating air quality with atmospheric 

chemical transport models. Most emission processing systems typically use prescribed profiles to allocate anthropogenic 
emissions based on the assumptions that the temporal variance is periodical and spatial variance is time-independent. 
However, these assumptions are not applicable to emission sources heavily influenced by meteorology and holiday activity. 
In this study, we improved the temporal and spatial allocation of anthropogenic emissions by, first of all, developing a 
dynamic allocation method for fugitive dust that uses the negative correlation between dust emissions and precipitation, 
based on hourly rainfall data generated by the Weather Research and Forecasting model. Second, we employed holiday-
specific profiles that were established using continuous emission monitoring system and traffic flow monitoring data to 
allocate power plant and on-road mobile emissions during the Spring Festival period, when human activity differs 
considerably from that of non-holiday periods. The new dynamic allocation method and holiday-specific profiles were 
applied to emissions in the Pearl River Delta region as a demonstration. Validated using a chemical transport model, this 
method obviously improved the model performance for periods with rainfall, with the normalized mean bias (NMB) 
decreasing by 6.27% for PM10 (particulate matter with a diameter of ≤ 10 µm) and 4.33% for PM2.5 (particulate matter with 
a diameter of ≤ 2.5 µm). The holiday simulations revealed that the holiday-specific profiles mitigated overestimations of 
NO2, SO2, and PM10 for the Spring Festival period, with the NMBs decreasing by 37.95%, 18.56%, and 20.83%, respectively. 
Hence, refining the allocation of emissions improved model simulation and air quality forecasting. 
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INTRODUCTION 
 

Atmospheric chemical transport models (CTMs) that 
simulate the transport and fate of atmospheric pollutants are 
critical tools for regulatory decision making, attainment 
demonstration, and air quality forecasting. However, chemical 
transport models are largely uncertain, mainly stemming 
from ambiguous model inputs and the simplified treatments 
of chemical and physical processes in the model’s formulation 
(Frey and Zheng, 2002; Sax and Isakov, 2003; Bieser et al., 
2011b). Among the model inputs, emissions constitute one 
of the most critical but inconsistent sources for CTMs in 
terms of not only the quantity but also the spatiotemporal 
distribution (Russell and Dennis, 2000; Sofiev et al., 2009;  
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Huang et al., 2017). Geng et al. (2017) demonstrated that 
the spatial proxies used to split the top-down emissions into 
gridded emission data significantly affected the simulation 
of NO2 columns. Also, in several studies, accurate emission 
allocation has been beneficial for improving air quality 
simulations and their applications (Gregg et al., 2009; 
Lindhjem et al., 2012; Yin et al., 2015). For example, Yin 
et al. (2015) found that updating the spatial allocation of 
volatile organic compound (VOC) emissions from industrial 
sources using location information derived from Google 
Earth improved ozone simulations in urban areas; it revealed 
that the normalized mean bias (NMB) exhibited a region-
wide decrease in October by 0.1% to 4.1%. 

The Sparse Matrix Operator Kernel Emissions (SMOKE) 
modeling system developed by the MCNC Environmental 
Modeling Center is a widely used tool for converting an 
emission inventory into gridded model-ready emission data 
through temporal and spatial allocation and chemical 
speciation (Bieser et al., 2011a, b). Although this system 
was primarily designed to create model-ready emission for 
CTMs in the United States, it has been adapted to other 
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regions outside the United States, including Spain (Bieser et 
al., 2011a), Korea (Kim et al., 2008), and the Pearl River 
Delta (PRD) region of China (Wang et al., 2011). During 
the temporal and spatial allocations, the online emission 
monitoring and location information (latitude and longitude) 
provide preferential data because they directly capture emission 
patterns. However, obtaining sufficient online emission 
observations is usually infeasible because of the large cost 
and huge time requirements. Therefore, the SMOKE system 
typically uses prescribed allocation profiles that rely on 
surrogate data to convert city-based/county-based annual 
emissions into gridded model-ready emissions. 

The prescribed temporal allocation profiles use monthly, 
weekly, and diurnal weighting factors to allocate annual 
emissions to monthly, weekly, and hourly categories, 
respectively. Similarly, spatial allocation profiles, which 
describe the proportion of total city or state emissions in a grid, 
are used to allocate bulky city-based/county-based emissions to 
each grid in study domains. To accurately allocate emissions, 
surrogate data that are highly relevant to the emission 
activity are recommended to create temporal and spatial 
profiles (SMOKE version 3.1 User’s Manual, 2012). For 
instance, the road network can represent spatial patterns of 
on-road mobile emissions and fugitive dust from road 
activity (Zheng et al., 2009; Fu et al., 2017), and population 
density can represent the spatial patterns of cooking and 
residential combustion emissions (Streets et al., 2003; Winijkul 
and Bond, 2016). The monthly emission patterns of industrial 
sources can be approximated by the monthly output and the 
use of raw materials. 

A major limitation of these prescribed profiles is that they 
do not reflect the dynamic variations in emission sources. 
The SMOKE system assumes that temporal variances of 
anthropogenic emission sources are periodic at weekly and 
diurnal levels, and week-to-week variations within 1 month 
are ignored. In addition, spatial variances are assumed to be 
time-independent. For example, all Mondays in a month use 
the same diurnal emission profile, and all days in a month 
use the same spatial allocation profile. This is reasonable for 
emission sources with regular temporal patterns, such as 
industrial sources that generally have an apparent diurnal 
variation. However, not all sources vary regularly, especially 
for those influenced by meteorology and holiday activities. 
For example, the emission pattern of fugitive dust depends 
on not only land use and human activity but also rainfall 
variations (Kuhns et al., 2003). Moreover, changes in human 
activity during the Chinese National holidays (October 1–7) 
significantly affect the speciated profiles and chemical 
reactivity of VOCs in the atmosphere (Xu et al., 2017). In 
this case, prescribed temporal profiles and spatial surrogates 
are no longer applicable to such dynamic sources such as 
biogenic sources, fugitive dust, ammonia (NH3) fugitives, 
marine sources, and biomass burning emissions. Moreover, 
most of these dynamic sources are primary contributors to 
ambient PM2.5 (Zhang et al., 2013; Karagulian et al., 2015). 
Therefore, an accurate temporal and spatial allocation of 
these dynamic sources is critical for air quality modeling and 
management. 

In this paper, we propose a new dynamic method for the 

temporal and spatial allocation of fugitive dust sources. The 
new method considers the effect of meteorology on emissions 
by studying hourly rainfall in determining the allocations. In 
addition, temporal profiles for special holidays were developed 
to demonstrate the effects of holiday activity on anthropogenic 
emissions. We applied the new dynamic method and special 
holiday profiles to case studies analyzing the effect of 
allocation on air quality modeling in the PRD region using 
the Comprehensive Air Quality Model with extensions 
(CAMx; ENVIRON, 2011), a widely used chemical transport 
model that evaluates particular effects on air quality modeling. 
 
METHODS AND DATA SOURCES 
 

In this section, we describe a new dynamic allocation 
method and updated holiday-specific profiles, and then 
using them in the SMOKE processing system for the PRD 
region (SMOKE-PRD; Wang et al., 2011). The simulation 
was conducted using the Weather Research and Forecasting 
(WRF)/SMOKE-PRD/CAMx modeling system. 
 
Dynamic Allocation of Fugitive Dust Emissions 

The temporal and spatial allocation of dust sources is 
typically achieved by using prescribed profiles. The spatial 
profiles were created with a “stand road length” method that 
considers the road network and traffic flow with the 
assumption that the fugitive road dust is positively correlated 
with on-road mobile activities (Zheng et al., 2009). Regarding 
the temporal profiles, the monthly weighting factors were 
developed by calculating the proportion of dry days in each 
month to the total dry days in a year based on a road dust 
estimation model from the U.S. Environmental Protection 
Agency (EPA, 1997), and the weekly and diurnal weighting 
factors were developed using the averaged traffic flow (Huang 
et al., 2015). However, these prescribed temporal and spatial 
profiles have two limitations. First, the prescribed temporal 
profiles only account for the rainfall effects on fugitive dust 
at the monthly level but ignore daily and hourly rainfall. 
Second, the prescribed profiles portray the spatial distribution 
of dust emissions as time-independent, but in fact, the 
washout effect of rainfall does indeed affect the spatial 
distribution of dust emissions. These two limitations may 
lead to overestimation of dust emissions on a rainy day in 
some areas (Xuan et al., 2000). 

To address these two limitations, we devised a dynamic 
method for allocating fugitive dust emissions by considering 
the washout effect of hourly precipitation. The dynamic 
allocation method involves two steps. First, similar to the 
conventional method, the top-down fugitive dust emissions 
were split into hourly emission grids using the prescribed 
temporal and spatial profiles. A uniform monthly profile 
was applied, and it assumed that no rainfall occurred during 
the entire year. This preliminary profile was necessary 
because the washout effect of precipitation was determined 
in the next step. Second, the fugitive dust emissions for each 
hour and each grid cell were adjusted using the precipitation 
correction factor, depending on the hourly gridded precipitation 
data simulated by the WRF model (as in Table 1). Studies 
have shown that emissions from unpaved roads should be  
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Table 1. Correction factor based on the precipitation. 

Precipitation in Hour 1 Precipitation in Hour 2 Correction factor in Hour 1 Correction factor in Hour 2 
< 0.254 mm < 0.254 mm 1 1 
< 0.254 mm ≥ 0.254 mm 1 0 
≥ 0.254 mm ≥ 0.254 mm 0 0 
≥ 0.254 mm < 0.254 mm 0 0.8 

 

set to zero when the total daily rainfall exceeds 0.254 mm 
(AP-42, Compilation of Air Emissions Factors; U.S. EPA, 
1993, 1998). Following the EPA’s work, we chose 0.254 
mm as the threshold of rainfall events. Kuhns et al. (2003) 
found that the paved roads could remain visibly wet for at 
most 6 h after a rain shower of less than 3.5 mm in the winter 
season. Also, Bergametti et al. (2016) showed that the 
fugitive dust can be observed in a shorter time after rain 
stops (< 6 h) in the case of light-rain events (< 2 mm). Given 
the high summer temperatures in the Pearl River Delta 
region and the lower threshold (0.254 mm), we used 2 hours 
instead of 6 hours as the wet period length in this study. If 
the precipitation for each of the 2 adjacent hours was greater 
than 0.254 mm, the correction factors for the current and the 
next hour were 0, indicating that precipitation entirely 
suppressed fugitive dust emissions. If the precipitation in the 
next hour was less than 0.254 mm, the correction factor for 
that hour was 0.8. If the precipitation for the 2 adjacent hours 
was less than 0.254 mm for both hours, the correction factors 
for these 2 hours were 1, indicating a slight effect of 
precipitation on dust emissions. Eq. (1) describes the 
dynamic method for fugitive dust emissions: 
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where E'

ij is the reallocated emissions at grid j and hour i, Eo 
is the dust emissions of a city, assuming no rain that day; 
and Fi,j is the precipitation correction factor at grid j and hour 
i determined by hourly precipitation data from the WRF 
model (Skamarock and Klemp, 2008). Ti is the temporal 
allocation factor for hour i according to the prescribed day-
of-week and hourly profiles. Sj is the spatial allocation factor 
at grid j according to the prescribed spatial profile. Finally, 
m is the total grid number covered by the city, and n is the 
total number of hours in the simulation period. 
 
Updated Special Profiles for Holidays 

Holidays alter commercial and commuting activities and 
thus affect anthropogenic emissions. In the SMOKE system, 
the diurnal and day-of-week profiles for the weekend model 
the temporal pattern for holidays. Holidays are treated as 
weekends in the modeling system. This attempts to capture 
activity changes such as plant closures. In China, weekend 
profiles could represent the hourly emission variation during 
short-term holidays, but they might be invalid for long-term 
holidays, such as the Chinese New Year, when the largest 
annual human migration happens as millions of Chinese people 
return to their hometowns for family reunions. Therefore, 

some anthropogenic emissions, such as those from on-road 
mobile and industrial sources, might exhibit distinct temporal 
and spatial patterns. In this study, we also developed special 
profiles to exclusively represent the temporal patterns of on-
road mobile sources and power plants during the Spring 
Festival. 
 
Emission Inventory 

This study adopted a high spatiotemporal resolution 
anthropogenic emission inventory of Guangdong Province 
(GD) from 2012 (Yin et al., 2017; Zhong et al., 2018). For 
the Hong Kong area in the modeling domain, annual 
emissions were provided by the Hong Kong Environmental 
Protection Department (HKEPD). The Multi-resolution 
Emission Inventory for China (Liu et al., 2015) developed 
by Tsinghua University, with the local activity data and 
accurate allocation information, was used to fill data gaps in 
the area outside GD in China. For the region outside China, 
the Regional Emission inventory in Asia (Ohara et al., 2007) 
was adopted. Biogenic VOC emissions were estimated using 
the Model of Emission of Gases and Aerosols from Nature 
(Guenther et al., 2012). Sea salt emissions were regarded as 
a biogenic source and estimated by a sea salt emission 
program (Seasalt version 3.1, http://www.camx.com). 

 
Modeling Systems 

A three-dimensional regional air quality simulation platform 
that integrated the WRF model, the SMOKE-PRD system 
(Wang et al., 2011), and the CAMx, was used to validate the 
new dynamic allocation method and holiday profiles. The 
modeling system used the Lambert conformal projection 
and three nested domains. The resolution of two coarse 
domains was 27 km × 27 km (D1, covering most parts of 
East and Southeast Asia) and 9 km × 9 km (D2, covering 
GD and its surroundings), and of the fine domain was 3 km 
× 3 km (D3, covering the whole PRD region and Hong 
Kong). The schematic diagram of the modeling domain and 
key parameters is illustrated in Fig. 1 and Table S1. 
 
Experimental Design 

In this study, we established a paired simulation with a 
base case (B-Case1) and a dust source case (D-Case1) to 
evaluate the new dynamic allocation methods for dust 
sources (Table 2). B-Case1 used the prescribed temporal and 
spatial profiles to allocate dust emissions, including road 
dust and construction dust emissions. D-Case1 was similar 
to B-Case1, except D-Case1 used the dynamic allocation 
method to process the dust source. In this paired simulation, 
we selected July 2013 as the simulation period because 
rainfall was frequent. 

We also established another paired simulation of a base  
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Fig. 1. Nested modeling domains configured for SMOKE-PRD system (D1: 27 km × 27 km; D2: 9 km × 9 km; D3: 3 km × 
3 km). 

 

Table 2. Allocation methods of the 4 simulation cases. 

Sectors B-Case1 D-Case1 B-Case2 H-Case2 
Power plant Prescribed profiles Prescribed profiles Prescribed profiles Holiday profiles 
On-road mobile Prescribed profiles Prescribed profiles Prescribed profiles Holiday profiles 
Dust source Prescribed profiles Dynamic allocation Prescribed profiles Prescribed profiles 

 

case (B-Case2) and an updated case (H-Case2) to examine 
the effect of the special holiday profiles on model simulation. 
B-Case2 used the 2012-based emissions with the prescribed 
temporal and spatial profiles, whereas H-Case2 used the 
2012-based emissions with prescribed spatial surrogates but 
updated holiday profiles. In this paired simulation, the 
simulation period was the Spring Festival in 2012. 

 
Observations and Model Evaluation 

The new dynamic allocation method for determining dust 
emissions relies on WRF modeling data. We used 
meteorological observations from 11 weather stations 
(including 7 in the PRD region) to evaluate the performance of 
WRF modeling in GD. Meteorological observations included 
ground surface temperature, wind speed and direction, and 
relative humidity. Mean bias (MB), mean error (ME), NMB, 
NME, and root mean square error (RMSE) were used to 
quantify the performance of the model (Eder and Yu, 2006). 
The evaluation results suggested that the model system can 
reproduce temperature and relative humidity, but marginally 

overpredict wind speed with a positive MB of 0.26 mꞏs–1 and 
NMB of 12.11%. Wind direction is a vector, and relatively 
high consistency was observed with an MB of 6.56° in the 
PRD region. The detailed performance statistics are presented 
in Table S2. In general, the bias of the WRF modeling system 
was acceptable, and the data were used for allocation. 

The CAMx model assessed the effectiveness of the new 
dynamic allocation method for model improvement. Therefore, 
we also used hourly observations from the PRD Regional 
Air Quality Monitoring Network (RAQMN; Zhong et al., 
2013) to evaluate the CAMx model. Statistical metrics such 
as MB, ME, NMB, NME, and RMSE (Boylan and Russell, 
2006; Borrego et al., 2008) were applied. NMB and NME 
are the two critical statistical metrics recommended by the U.S. 
EPA (2007, 2009) and have been frequently used to evaluate 
model performance in many air quality modeling studies 
(Smyth et al., 2009; Cho et al., 2012). All measurements in 
RAQMN were subject to strict quality assurance and control 
procedures. The evaluation results of CAMx are discussed 
subsequently. 



 
 
 

Jia et al., Aerosol and Air Quality Research, 19: 2531–2542, 2019 2535 

RESULTS AND DISCUSSION 
 
Temporal and Spatial Allocation of Dust Emissions 

Fig. 2 compares the daily and hourly variations in dust 
emissions (PM10 was used as an example) allocated by 
different methods. B-Case1 used the prescribed temporal 
profile, and daily variation in PM10 emissions displayed a 
minor periodic change, completely independent of rainfall. 
Even during July 25 to 27, with intensive precipitation in 
GD, PM10 emissions from dust sources still corresponded 
with the normal level for the dry period, but this is not true 
in reality (Fig. 2(a)). This indicated that the allocation 
method that relied on prescribed temporal profiles could not 
reflect the dynamic changes in dust emissions because the 
washout effect on dust sources from hourly precipitation was 
neglected. By contrast, the daily variation in PM10 emissions 
allocated by the dynamic method exhibited a distinct 
negative linear relationship with precipitation, particularly 
from July 25 to 27. The precipitation decreased PM10 emissions 
in the whole domain on July 26 by approximately 23%, 
which may have profoundly affected the PM10 simulation 
(Fig. 2(c)). In other words, the new dynamic allocation 
method produced appropriate dust emissions. Figs. 2(b) and 
2(c) depict the hourly variation in PM10 emissions from dust 
sources allocated by the prescribed profiles and the dynamic 
method. In the dry period, the hourly variation patterns 
based on the two methods were similar. Both were high in 
the day and low in the night. In rainy hours, dust emissions 
substantially decreased with the new dynamic allocation 
method. These comparisons suggest that the new dynamic 
allocation method appropriately allocated dust emissions. 

The spatial difference between gridded dust emissions 
from the prescribed allocation profiles and the dynamic 
allocation method are compared in Fig. 3. Dust emissions on 
a dry day (July 5, 2013) and a rainy day (July 26, 2013) were 
used as examples. On dry days, the prescribed profiles and 
dynamical location method distributed dust emissions in a 
similar way. However, on rainy days, differences emerged. 
In the central and eastern PRD regions with precipitation, 
dust emissions were suppressed. The aforementioned regions 
are characterized by high dust emissions. A slight washout 
effect was also observed in the other region with lower dust 
emissions. Thus, the spatial pattern of dust sources was also 
reasonably depicted using the dynamic method on both 
rainy and dry days. No dust emission change was observed 
in Hong Kong because its emission data contained no dust 
source. 
 
Holiday Profiles for the Power Plant and On-road Mobile 
Sources 

Fig. 4 compares daily variations in the anthropogenic 
emissions allocated by the conventionally prescribed temporal 
profiles with those allocated by the holiday-specific profiles. 
Power plant and on-road mobile emissions were used as 
examples because power plants and on-road mobile sources 
are more affected by holidays than other emission sources. 
The prescribed temporal profiles were generally developed 
using the averages of surrogate data. Thus, they only represent 
the temporal variation in the non-holiday period. In general, 
during the Spring Festival, power plant emissions exhibited 
a distinct temporal variation from those in the non-holiday 
period. In the non-holiday period, power plant emissions 

 

 
Fig. 2. (a) shows daily emission fraction (dimensionless) using the prescribed temporal profiles (blue line) and the dynamic 
profile (red line), and precipitation (purple line) averaged over the third domain in July 2013; (b) shows hourly variation in 
PM10 on a typical dry day (July 5, 2013) in a typical grid; (c) shows hourly variation in PM10 on a typical rainy day (July 26, 
2013) in a typical grid, and the hour covered by the purple area indicates the precipitation over 0.254 mm.  
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Fig. 3. (a) and (b) show the hourly precipitation on a typical dry day (July 5, 2013) and typical rainy day (July 26, 2013) in 
the third modeling domain; (c) and (d) show the percentage changes in PM10 from dust sources on a typical no-rain day (July 
5, 2013) and rainy day (July 26, 2013). 

 

changed a little, whereas those emissions decreased during 
the Spring Festival mainly because factory shutdowns and 
production cuts reduced power demand during the holiday 
(Fig. 4(a)). However, we nonetheless observed that the 
highest power plant emissions occurred on January 22, 2012, 
during the Spring Festival, mainly because New Year’s Eve 
celebrations held in China increased power demand. 

Regarding the on-road mobile sources (Fig. 4(b)), emissions 
from heavy-duty vehicles (HDVs) and light-duty vehicles 
(LDVs) in the PRD drop significantly during the Spring 
Festival. This is because most people travel from megacities 
to their hometowns for reunions, which substantially reduces 
vehicle activity in urban areas (Wang et al., 2017). Therefore 
on-road moving vehicles have lower emissions during the 
Spring Festival in contrast to the normal period. In addition 
to the daily variation, the hourly variation in the on-road 
mobile sources during the Spring Festival also differed from 
that during non-holidays. During the Spring Festival, emissions 
peaked for both HDVs and LDVs in the daylight hours. 
Detailed information regarding hourly variation appears in 
Fig. S1. 

Because the activity data were limited, we only developed 
holiday profiles for the power plant and on-road mobile 
sources. However, other anthropogenic sources, including 
industrial processes, solvent use, and cooking, might also 
exhibit their own specific temporal variation during holidays. 
For instance, Lin and Mcelroy (2011) suggested that a 
decline in NOx emissions during the Spring Festival partly 
resulted from the decrease in industrial sources. Typically, 
longer holidays lead to larger changes in emissions. Therefore, 
to improve model simulations, developing holiday profiles 
for each anthropogenic source is critical. 

 
Model Performance of Different Allocation Scenarios 

In this study, two paired simulations evaluated the effects 
of the new dynamic allocation method and holiday profiles 
on model simulations. The first paired simulation, B-Case1 
and D-Case1, analyzed the dynamic allocation method of 
dust sources. Thus, we focused on the evaluation of PM10 
and PM2.5 simulation performance. The second paired 
simulation, B-Case2 and H-Case2, examined the holiday 
profiles of the power plant and on-road mobile sources. 
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Fig. 4. Daily variation using traditionally prescribed (blue) and holiday (red) profiles. 

 

Because the power plant was a major source of NO2, SO2, 
and PM10 emissions but on-road mobile sources were a 
major source of NO2 emissions, the evaluation of the second 
paired simulation was focused on NO2, SO2, and PM10. 
 
Effect of Dynamic Allocation of Fugitive Dust Emissions 

Fig. 5 compares the time series of simulated PM10 
concentrations for B-Case1 and D-Case1. B-Case1 and D-
Case1 used the same emission dataset, but B-Case1 used the 
conventionally prescribed profile method, and D-Case1 
used the dynamic allocation method for dust emissions. 
Fig. 5 only depicts simulations from July 25 to 27, when 
intensive precipitation occurred in the PRD region. The 
Guangzhou (GZLH), Zhongshan (ZSZM), Shenzhen (SZLY), 
and Dongguan (DGNC) sites, where dust emissions were 
concentrated, were selected as examples for Fig. 5. 

In B-Case1, PM10 concentrations in the urban area were 
overestimated on rainy days. In particular, simulated PM10 
concentrations at the ZSZM and GZLH stations demonstrated 
an abnormal peak on July 26, potentially resulting from the 
overestimation of primary dust emissions in this period. By 
contrast, in D-Case1, dust emissions largely decreased from 
the washout effect of precipitation, and the discrepancies 
between simulated and observed PM10 concentrations also 
decreased. The NMB of PM10 concentrations in GZLH, 
ZSZM, SZLY, and DGNC decreased by 25.37%, 36.42%, 
8.12%, and 19.47%, respectively (Table 3), indicating that 
the dynamic allocation of dust emissions improved model 
simulations for rainfall periods. In particular, the peak of 
simulated PM10 concentrations at the ZSZM and GZLH sites 
decreased substantially. This was because the changes were 
mainly concentrated in the central area of the PRD region 
(Fig 3(d)), where the ZSZM and GZLH sites are located, 
indicating that dust emissions were the major contributor to 
PM10 concentrations in this area. Similar to PM10, PM2.5 
simulations also demonstrated improvement at these 4 sites 
(Fig. S3), although the improvement was weaker than that 
of the PM10 simulation because the contribution of dust sources 
to PM2.5 emissions was less than that to PM10 emissions 
(Peng et al., 2013; Jiang et al., 2018). 

Note that not all regions saw PM10 simulation improvement; 
some stations performed slightly worse. For instance, the 
NME slightly increased by 0.82%, 1.66%, 3.48%, and 3.21% 

at the Foshan (FSHJ), Zhaoqing (ZQCZ), Shunde (SDDX), 
and Conghua (CHTH) stations, respectively (Table 3). 
Furthermore, the NMB increased by 7.99%, 2.62%, 8.09%, 
and 5.60% relatively at the FSHJ, ZQCZ, SDDX, and 
CHTH stations, respectively. Two reasons might account for 
the worse performance. The first reason is associated with a 
large uncertainty in emissions. Compared with the 
conventional allocation method, the new method allocates 
less PM10 and PM2.5 emissions in rainfall areas and periods. 
Thus, the overestimation of simulated PM10 concentration, 
partly due to the excessive allocation of PM10 emissions, 
was overall alleviated during the wet period. However, PM10 
concentrations in some stations were underestimated in the 
B-Case1, with the NMB from –31.46% to –45.94%. In fact, 
most of these stations are located in the rural areas of PRD, 
where emission estimations generally have large uncertainties 
due to the unrepresentative activity data. In this case, the 
new allocation method would further reduce PM10 emission, 
consequently leading to worse PM10 simulation. Second, we 
refined the temporal and spatial allocation of fugitive dust 
but ignored other emission sources, such as open fire 
combustion. 

 
Effects of Holiday Profiles 

Fig. 6 compares the time series of simulated PM10 
concentrations in B-Case2 and H-Case2. B-Case2 and H-
Case2 used the same emission dataset, except B-Case2 used 
the conventionally prescribed temporal profile method, 
whereas H-Case2 used the holiday-specific profiles for the 
power plant and on-road mobile sources. The GZLH and 
DGNC sites were selected for the comparison because 
Guangzhou and Dongguan are major contributors to on-road 
mobile and power plant emissions. Statistics of model 
performance averaged over the whole PRD region are 
summarized in Table 4.  

As in Table 4, B-Case2 substantially overestimated NO2, 
SO2, and PM10 concentrations, with NMBs of 60.77%, 
27.49%, and 36.36%, respectively. The overestimates were 
strongly associated with the uncertainties in the temporal 
allocation. In B-Case2, excessive emissions were assigned 
to the Spring Festival based on the conventional temporal 
profiles, which assumed that anthropogenic activity remained 
at the usual level. However, this is inappropriate because  
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Fig. 5. Time series of simulated and observed PM10 at GZLH, ZSZM, SZLY, and DGNC from July 25 to July 27, 2013. 

 

Table 3. The absolute differences of NMB and NME in B-Case1 and D-Case1 (July 25–27, 2013). 

Station 
D-Case1–B-Case1 

PM10 PM2.5 
Δ|NMB| Δ NME Δ |NMB| Δ NME 

CHTH 5.60 3.21 –2.63 0.22 
DGNC –19.47 –7.23 –7.15 –4.50 
FSLJ 7.99 0.82 –4.12 –0.98 
GZLH –25.37 –18.84 0.38 –7.66 
HZJG 1.54 1.06 1.17 0.44 
HZXP 4.30 2.09 –1.91 –0.40 
JMDH –12.37 –3.86 –6.22 –4.11 
SDDX 8.09 3.48 –5.18 –2.77 
SZLY –8.12  –2.40  –4.82  –5.05  
ZHTJ –3.64  –2.19  –4.67  –4.65  
ZQCZ 2.62 1.66 –0.67 0.04 
ZSZM –36.42 –25.70 –16.15 –11.29 

 

the massive migration from urban to rural areas suspended 
operations or decreased production. Using holiday-specific 
profiles improved model performance. Both NME and 
NMB decreased respectively by 22.24% and 37.95% for 
NO2, 9.72% and 18.56% for SO2, and 20.83% and 9.67% for 
PM10. The improvement in urban areas with intensive 
mobile emissions was typically higher. As shown in Fig. 5, 
H-Case2 substantially alleviated the overestimation for B-
Case2 at the GZLH and DGNC stations. For example, the 
NMB in the NO2 simulation decreased by 76.11% and 
65.06% at GZLH and DGNC, respectively (Table S4). 

Although the holiday-specific profiles were applied, 
pollutant concentrations were still overestimated because 
other major emission sources were also highly affected by 

the holidays but not reflected in the simulations, such as 
industrial combustion, industrial processes, and solvent use. 
Nonetheless, we believe that the model can be further 
improved if holiday-specific profiles for other sources are 
incorporated in the case study.  

The aforementioned comparisons demonstrated that 
holiday-specific profiles were beneficial for improving the 
model’s performance. However, holiday-specific profiles 
may be spatially dependent. To investigate this, we evaluated 
the model performance in the rural region of the PRD 
(Table S4). In contrast to the urban area’s stations, model 
performance decreased slightly in the PRD rural region. For 
instance, the NME and NMB of PM10 concentrations both 
increased at Huizhou (HZJG), with the NME increasing  
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Fig. 6. Time series of simulated and observed NO2, SO2, and PM10 at GZLH (a–c) and DGNC (d–f) from January 22 to 
January 28, 2012. 

 

Table 4. The overall model performance of CAMx in B-Case2 and H-Case2 (January 22–28, 2012). 

 
B-Case2 H-Case2 

NO2 SO2 PM10
a NO2 SO2 PM10

a 
NMB (%) 60.77 27.49 36.36 22.83 8.93 15.53 
NME (%) 78.63 81.91 57.19 56.40 72.19 47.51 
RMSE (ppb) 13.04 4.47 32.35 11.64 3.98 29.60 
R 0.62 0.29 0.47 0.69 0.31 0.51 

a µg m–3. 

 

from 51.77% to 52.35% and NMB from 11.48% to 12.87%. 
This is possible because the holiday-specific profiles 
developed from the monitoring data in urban PRD areas may 
not match the emission variation in rural PRD areas, 
particularly for the on-road mobile sources. During the 
Spring Festival, numerous migrants leave the urban PRD 
areas in vehicles and return to their hometowns to celebrate 
the holiday. Therefore, during this festival, vehicle emissions 
in rural PRD areas or non-PRD cities might increase. 
 
CONCLUSIONS 
 

In this study, we developed a novel dynamic allocation 

method for fugitive dust and updated holiday-specific 
profiles to improve the temporal and spatial allocation of 
anthropogenic emissions. Unlike the conventional allocation 
method, which relies on prescribed profiles for which temporal 
and spatial variations in anthropogenic emissions are assumed 
to be periodical and time-independent, the new method used 
hourly rainfall data and addressed the washout effect of rain 
to refine the allocation. Applying our new approach to our 
case study in the PRD, the estimated dust emissions on rainy 
days were reduced by approximately 23%, and the PM10 
simulation bias was reduced by approximately 10% on 
average, indicating that this method is more accurate than 
previous ones in allocating dust emissions. 
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Furthermore, we created unique local temporal profiles 
for power plant and on-road mobile sources to characterize 
emission variations during specific holidays, such as the 
Spring Festival. The model evaluations revealed that such 
profiles for the Spring Festival mitigated the overestimation 
of NO2, SO2, and PM10, significantly reducing the NME by 
22.24%, 9.27%, and 9.67%, respectively. These results indicate 
that special local holiday profiles should be developed to 
improve the accuracy of air quality modeling. 

The concept of dynamic emission allocation proposed in 
this study can also be adapted to other anthropogenic sources, 
such as fugitive ammonia emissions, which are greatly 
affected by meteorological parameters. However, accurate 
spatial and temporal emission allocations require a significant 
amount of dynamic data that reflect the spatial and temporal 
characteristics of emission sources. Big data may facilitate 
higher resolutions of spatial and temporal allocations, and our 
study serves as an example to initiate this type of research. 
 
ACKNOWLEDGMENTS 
 

This work was supported by the National Key R&D 
Program of China (No. 2018YFC0213904). 
 
SUPPLEMENTARY MATERIAL 
 

Supplementary data associated with this article can be 
found in the online version at http://www.aaqr.org. 
 
REFERENCE 
 
Adelman, Z. and Baek, B.H. (2012). Methods for estimating 

meteorology-based emissions temporal profiles for livestock 
and residential wood combustion sources. Institute for the 
Environment. University of North Carolina at Chapel 
Hill. pp. 1–25. 

Amato, F., Alastuey, A., Rosa, J. De, Castanedo, Y.G., 
Campa, A.M.S. and De, Pandolfi, M. (2014). Trends of 
road dust emissions contributions on ambient air 
particulate levels at rural, urban and industrial sites in 
southern Spain. Atmos. Chem. Phys. 14: 3533–3544. 

Bergametti, G., Rajot, J.L., Pierre, C., Bouet, C. and 
Marticorena, B. (2016). How long does precipitation 
inhibit wind erosion in the Sahel? Geophys. Res. Lett. 43: 
6643–6649. 

Bieser, J., Aulinger, A., Matthias, V., Quante, M. and Builtjes, 
P. (2011a). SMOKE for Europe–adaptation, modification 
and evaluation of a comprehensive emission model for 
Europe. Geosci. Model Dev. Discuss. 3: 949–1007. 

Bieser, J., Aulinger, A., Matthias, V., Quante, M. and Denier 
van der Gon, H.A.C. (2011b). Vertical emission profiles 
for Europe based on plume rise calculations. Environ. 
Pollut. 159: 2935–2946. 

Borrego, C., Monteiro, A., Ferreira, J., Miranda, A.I., Costa, 
A.M., Carvalho, A.C. and Lopes, M. (2008). Procedures 
for estimation of modelling uncertainty in air quality 
assessment. Environ. Int. 34: 613–620. 

Boylan, J.W. and Russell, A.G. (2006). PM and light 
extinction model performance metrics, goals, and criteria 

for three-dimensional air quality models. Atmos. Environ. 
40: 4946–4959. 

Chen, J.H., Wang, W., Liu, H.J. and Ren, L.H (2012). 
Determination of road dust loadings and chemical 
characteristics using resuspension. Environ. Monit. 
Assess. 184: 1693–1709 

Cho, S., Mceachern, P., Morris, R., Shah, T. and Johnson, J. 
(2012). Emission sources sensitivity study for ground-
level ozone and PM2.5 due to oil sands development using 
air quality modeling system: Part I–model evaluation for 
current year base-case simulation. Atmos. Environ. 55: 
533–541. 

Eder, B. and Yu, S. (2006). A performance evaluation of the 
2004 release of Models-3 CMAQ. Atmos. Environ. 40: 
4811–4824. 

ENVIRON (2011). User’s guide–Comprehensive air quality 
model with extensions-Version 5.40. Novato. 

Frey, H.C. and Zheng, J. (2002). Quantification of 
variability and uncertainty in air pollutant emission 
inventories: Method and case study for utility NOx 
emissions. J. Air Waste Manage. Assoc. 52: 1083–1095. 

Fu, M., Kelly, J.A. and Clinch, J.P. (2017). Estimating 
annual average daily traffic and transport emissions for a 
national road network: A bottom-up methodology for 
both nationally-aggregated and spatially-disaggregated 
results. J. Transp. Geogr. 58: 186–195. 

Geng, G., Zhang, Q., Martin, R. V., Lin, J., Huo, H., Zheng, 
B., Wang, S. and He, K. (2017). Impact of spatial proxies 
on the representation of bottom-up emission inventories: 
A satellite-based analysis. Atmos. Chem. Phys. 17: 4131–
4145. 

Gregg, J.S., Losey, L.M., Andres, R.J., Blasing, T.J. and 
Marland, G. (2009). The temporal and spatial distribution 
of carbon dioxide emissions from fossil-fuel use in North 
America. J. Appl. Meteorol. Climatol. 48: 2528–2542. 

Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, 
T., Duhl, T., Emmons, L.K. and Wang, X. (2012). The 
Model of Emissions of Gases and Aerosols from Nature 
version 2.1 (MEGAN2.1): An extended and updated 
framework for modeling biogenic emissions. Geosci. 
Model Dev. 5: 1471–1492. 

Huang, Z.J., Wang, S.S., Zheng, J.Y., Yuan, Z.B., Ye, S.Q. 
and Kang, D.W. (2015). Modeling inorganic nitrogen 
deposition in Guangdong province, China. Atmos. 
Environ. 109: 147–160. 

Huang, Z.J., Hu, Y.T., Zheng, J.Y., Yuan, Z.B., Russell, 
A.G. and Ou, J.M. (2017). A new combined stepwise-
based high-order decoupled direct and reduced-form method 
to improve uncertainty analysis in PM2.5 simulations. 
Environ. Sci. Technol. 51: 3852–3859. 

Jiang, N., Dong, Z., Xu, Y.Q., Yu, F., Yin, S.S., Zhang, R.Q. 
and Tang, X.Y. (2018). Characterization of PM10 and 
PM2.5 Source profiles of fugitive dust in Zhengzhou, 
China. Aerosol Air Qual. Res. 18: 314–319. 

Karagulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, 
A.M., Bonjour, S., Adair-Rohani, H. and Amann, M. 
(2015). Contributions to cities’ ambient particulate matter 
(PM): A systematic review of local source contributions 
at global level. Atmos. Environ. 120: 475–483. 



 
 
 

Jia et al., Aerosol and Air Quality Research, 19: 2531–2542, 2019 2541 

Kim, S.T., Moon, N.K. and Byun, D.W.W. (2008). Korea 
emissions inventory processing using the US EPA's 
SMOKE system. Asian J. Atmos. Environ. 2: 34–46. 

Kuhns, H., Etyemezian, V., Green, M., Hendrickson, K., 
McGown, M., Barton, K. and Pitchford, M. (2003). 
Vehicle-based road dust emission measurement-Part II: 
Effect of precipitation, wintertime road sanding, and 
street sweepers on inferred PM10 emission potentials from 
paved and unpaved roads. Atmos. Environ. 37: 4573–
4582. 

Lin, J.T. and Mcelroy, M.B. (2011). Detection from space 
of a reduction in anthropogenic emissions of nitrogen 
oxides during the Chinese economic downturn. Atmos. 
Chem. Phys. 11: 8171–8188. 

Lindhjem, C.E., Pollack, A.K., DenBleyker, A. and Shaw, 
S.L. (2012). Effects of improved spatial and temporal 
modeling of on-road vehicle emissions. J. Air Waste 
Manage. Assoc. 62: 471–484. 

Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H. and 
He, K.B. (2015). High-resolution inventory of technologies, 
activities, and emissions of coal-fired power plants in 
China from 1990 to 2010. Atmos. Chem. Phys. 15: 13299–
13317. 

Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., 
Yan, X. and Hayasaka, T. (2007). An Asian emission 
inventory of anthropogenic emission sources for the 
period 1980-2020.  Atmos. Chem. Phys. 7: 4419–4444. 

Peng, K., Yang, Y., Zheng, J.Y., Yin, S.S., Gao, Z.J. and 
Huang, X.B. (2013). Emission factor and inventory of 
paved road fugitive dust sources in the Pearl River Delta 
region. Acta Sci. Circumst. 33: 2657–2663 (In Chinese). 

Russell, A. and Dennis, R. (2000). NARSTO critical review 
of photochemical models and modeling. Atmos. Environ. 
34: 2283–2324. 

Sax, T. and Isakov, V. (2003). A case study for assessing 
uncertainty in local-scale regulatory air quality modeling 
applications. Atmos. Environ. 37: 3481–3489. 

Skamarock, W.C. and Klemp, J.B. (2008). A time-split 
nonhydrostatic atmospheric model for weather research 
and forecasting applications. J. Comput. Phys. 227: 3465–
3485. 

SMOKE v3.1 User’s Manual (2012) The Institute for the 
Environment-The University of North Carolina at Chapel 
Hill. 

Smyth, S.C., Jiang, W., Roth, H., Moran, M.D., Makar, 
P.A., Yang, F., Bouchet, V.S. and Landry, H. (2009). A 
comparative performance evaluation of the AURAMS 
and CMAQ air-quality modeling systems. Atmos. Environ. 
43: 1059–1070. 

Sofiev, M., Miranda, A.L. and Sokhi, R. (2009). Review of 
the capabilities of meteorological and chemistry-transport 
models for describing and predicting air pollution 
episodes. COST 728/WMO Joint Report. 1502. 

Streets, D.G., Bond, T.C., Carmichael, G.R., Fernandes, 
S.D., Fu, Q., He, D., Klimont, Z., Nelson, S.M., Tsai, 
N.Y., Wang, M.Q., Woo, J. and Yarber, K.F. (2003). An 
inventory of gaseous and primary aerosol emissions in 
Asia in the year 2000. J. Geophys. Res. 21: 8809. 

U.S. EPA (1993, 1998). AP-42, Compilation of air pollutant 

emission factors. U.S. EPA’s emission factor guidance 
document AP-42. U. S. Environmental Protection Agency. 

U.S. EPA (2007). Guidance on the use of models and other 
analyses for demonstrating attainment of air quality goals 
for guidance on the use of models and other air quality 
goals for ozone, PM2.5, and Regional Haze. Air Quality 
Analysis Division, Air Quality Modeling Group, Office 
of Air Quality Planning and Standards, U.S. Environmental 
Protection Agency, Research Triangle Park, North 
Carolina. 

U.S. EPA (2009). Guidance on the development, evaluation, 
and application of environmental models. Office of 
Research and Development, U.S. Environmental Protection 
Agency. 

Wang, C., Huang X., Zhu, Q., Cao, M.L., Zhang, B. and He, 
L.Y. (2017). Differentiating local and regional sources of 
Chinese urban air pollution based on the effect of the 
Spring Festival. Atmos. Chem. Phys. 17: 9103–9114. 

Wang, S.S., Zheng, J.Y., Fu, F., Yin, S.S. and Zhong, L.J. 
(2011). Development of an emission processing system 
for the Pearl River Delta Regional air quality modeling 
using the SMOKE model: Methodology and evaluation. 
Atmos. Environ. 45: 5079–5089. 

Winijkul, E. and Bond, T.C. (2016). Emissions from 
residential combustion considering end-uses and spatial 
constraints: Part II, emission reduction scenarios. Atmos. 
Environ. 124: 1–11. 

Xu, Z., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Sun, 
P. and Ding, A. (2017). Influence of synoptic condition 
and holiday effects on VOCs and ozone production in the 
Yangtze River Delta region, China. Atmos. Environ. 168: 
112-124. 

Xuan, J., Liu, G. and Du, K. (2000). Dust emission 
inventory in Northern China. Atmos. Environ. 34: 4565–
4570. 

Yin, S.S., Zheng, J.Y., Lu, Q., Yuan, Z.B., Huang, Z.J., 
Zhong, L.J. and Lin, H. (2015). A refined 2010-based 
VOCs emission inventory and its improvement on 
modeling regional ozone in the Pearl River Delta Region, 
China. Sci. Total Environ. 514: 426–438. 

Yin, X.H., Huang, Z.J., Zheng, J.Y., Yuan, Z.B., Zhu, W.B., 
Huang, X.B. and Chen, D.H. (2017). Source contributions 
to PM2.5 in Guangdong province, China by numerical 
modeling: Results and implications. Atmos. Res. 186: 63–
71. 

Zhang, R., Jing, J., Tao, J., Hsu, S.C., Wang, G., Cao, J., Lee, 
C.S.L., Zhu, L., Chen, Z., Zhao, Y. and Shen, Z. (2013). 
Chemical characterization and source apportionment of 
PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. 
Phys. 13: 7053–7074. 

Zheng, J.Y., Che, W.W., Wang, X.M., Louie, P.K.K. and 
Zhong, L.J. (2009). Road-network-Based spatial allocation 
of on-road mobile source emissions in the Pearl River 
Delta region, China, and comparisons with population-
based approach. J. Air Waste Manage. Assoc. 59: 1405–
1416. 

Zhong, L.J., Louie, P.K.K., Zheng, J.Y., Wai, K.M., Ho, 
J.W.K., Yuan, Z.B., Lau, A.K.H., Yue, D.L. and Zhou, Y. 
(2013). The pearl river delta regional air quality 



 
 
 

Jia et al., Aerosol and Air Quality Research, 19: 2531–2542, 2019 2542

monitoring network-regional collaborative efforts on 
joint air quality management. Aerosol Air Qual. Res.13: 
1582–1597. 

Zhong, Z.M., Zheng, J.Y., Zhu, M.N., Huang, Z.J, Zhang, 
Z.W., Jia, G.L., Wang, X.L., Bian, Y.H., Wang, Y.L. and 
Li, N. (2018). Recent developments of anthropogenic air 
pollutant emission inventories in Guangdong province, 

China. Sci. Total Environ. 627: 1080–1092. 
 
 

Received for review, April 1, 2019 
Revised, July 7, 2019 

Accepted, September 2, 2019

 


