Guanglin Jia1, Zhijiong Huang 2, Yuanqian Xu1, Zhuangmin Zhong2, Qinge Sha1, Xiaobo Huang1, Jing Yang1, Junyu Zheng 1,2

School of Environment and Energy, South China University of Technology, University Town, Guangzhou 510006, China
Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, China

Received: April 1, 2019
Revised: July 7, 2019
Accepted: September 2, 2019
Download Citation: ||  

Cite this article:
Jia, G., Huang, Z., Xu, Y., Zhong, Z., Sha, Q., Huang, X., Yang, J. and Zheng, J. (2019). A Dynamic Dust Emission Allocation Method and Holiday Profiles Applied to Emission Processing for Improving Air Quality Model Performance. Aerosol Air Qual. Res. 19: 2531-2542.


  • A new dynamic allocation method was developed for fugitive dust sources.
  • Holiday profiles for the power plant and on-road mobile sources were updated.
  • Using the new method and holiday profiles both can reduce model bias.


An accurate depiction of temporal and spatial variations in emissions is critical in simulating air quality with atmospheric chemical transport models. Most emission processing systems typically use prescribed profiles to allocate anthropogenic emissions based on the assumptions that the temporal variance is periodical and spatial variance is time-independent. However, these assumptions are not applicable to emission sources heavily influenced by meteorology and holiday activity. In this study, we improved the temporal and spatial allocation of anthropogenic emissions by, first of all, developing a dynamic allocation method for fugitive dust that uses the negative correlation between dust emissions and precipitation, based on hourly rainfall data generated by the Weather Research and Forecasting model. Second, we employed holiday-specific profiles that were established using continuous emission monitoring system and traffic flow monitoring data to allocate power plant and on-road mobile emissions during the Spring Festival period, when human activity differs considerably from that of non-holiday periods. The new dynamic allocation method and holiday-specific profiles were applied to emissions in the Pearl River Delta region as a demonstration. Validated using a chemical transport model, this method obviously improved the model performance for periods with rainfall, with the normalized mean bias (NMB) decreasing by 6.27% for PM10 (particulate matter with a diameter of ≤ 10 µm) and 4.33% for PM2.5 (particulate matter with a diameter of ≤ 2.5 µm). The holiday simulations revealed that the holiday-specific profiles mitigated overestimations of NO2, SO2, and PM10 for the Spring Festival period, with the NMBs decreasing by 37.95%, 18.56%, and 20.83%, respectively. Hence, refining the allocation of emissions improved model simulation and air quality forecasting.

Keywords: Fugitive dust; Dynamic allocation; Holiday profile; Emission process.

Don't forget to share this article 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

SCImago Journal & Country Rank