Tong Chen1, Yufeng Ma1, Mingxiu Zhan 1,2, Xiaodong Li1, Jianhua Yan1


State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China



Received: February 23, 2019
Revised: April 9, 2019
Accepted: May 13, 2019
Download Citation: ||https://doi.org/10.4209/aaqr.2019.01.0019  

  • Download: PDF


Cite this article:
Chen, T., Ma, Y., Zhan, M., Li, X. and Yan, J. (2019). Emission Characteristics of Pollutants from Co-processing Aged Refuse in a Bench-scale Simulated Cement Kiln. Aerosol Air Qual. Res. 19: 1377-1389. https://doi.org/10.4209/aaqr.2019.01.0019


HIGHLIGHTS

  • The physicochemical properties of CCAR were studied and compared with OMSW.
  • CCAR was co-processing in a lab-scale cement kiln.
  • CCAR couldn't be added at the inlet of raw meal.

ABSTRACT


In this paper, a bench-scale simulated cement kiln was used to study the emission characteristics, as well as the main factors that influence them, of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), heavy metals, and hydrogen chloride (HCl) in flue gas generated by co-processing combustible components of aged refuse (CCAR). The main combustible components were plastics, textiles, and woods, and the calorific value of CCAR (> 2.5 × 107 J kg–1) was much higher than that of original municipal solid waste (OMSW). De novo synthesis was the dominant PCDD/F formation pathway during the co-processing of CCAR, and CCAR with higher chlorine and Cu content tended to generate more PCDD/Fs. The concentration of the PCDD/Fs produced by the pure raw meal used in this experiment was 3.25 ng m–3 (0.33 ng I-TEQ m–3), which increased to 3.87 (0.56), 6.27 (0.69), or 5.77 ng m–3 (0.72 ng I-TEQ m–3) when CCAR from different landfill periods was mixed in, with the more chlorinated substituted PCDD/F congeners, especially 1,2,3,4,6,7,8-HpCDF, exhibiting relatively high concentrations. However, the less chlorinated substituted PCDD/Fs, especially 2,3,7,8-PCDD and 2,3,4,7,8-PeCDF, contributed the major share of the I-TEQ value. Feeding CCAR through the raw meal inlet increased the formation of PCDD/Fs. Principal component analysis (PCA) was conducted to identify the similarities and differences between congener distributions among the various samples. Overall, the co-processing of CCAR increases the concentration of pollutants and requires more effective technologies for controlling emissions.


Keywords: Simulated cement kiln device; Aged refuse; PCDD/Fs; Heavy metals; Emission characteristics; PCA.

 



Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank