Chun-Yu Chen1, Yu-Chieh Kuo1, Shih-Min Wang2, Kua-Rong Wu1, Yu-Cheng Chen3, Perng-Jy Tsai 1


Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
National Environmental Health Research Center, National Health Research Institutes, Miaoli 35053, Taiwan



Received: September 17, 2018
Revised: November 27, 2018
Accepted: November 11, 2018
Download Citation: ||https://doi.org/10.4209/aaqr.2018.09.0346 

  • Download: PDF


Cite this article:
Chen, C.Y., Kuo, Y.C., Wang, S.M., Wu, K.R., Chen, Y.C. and Tsai, P.J. (2019). Techniques for Predicting Exposures to Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Cooking Processes for Cooking Workers. Aerosol Air Qual. Res. 19: 307-317. https://doi.org/10.4209/aaqr.2018.09.0346


HIGHLIGHTS

  • Gaseous-phase PAHs dominate total-PAH concentrations of cooking oil fumes.
  • No significant difference between near- and far-field PAH exposures.
  • The well-mixed room model is suitable for PAH exposure predictions.

ABSTRACT


Cooking oil fumes contain polycyclic aromatic hydrocarbons (PAHs), which are known to cause chronic human health effects; hence long-term exposure data is required for determining workers’ exposure profiles and the resultant health risks. However, due to both time and cost constraints, previous studies were performed on a cross-sectional basis. To date, mathematical models have been widely used for predicting long-term exposures in the industrial hygiene field. The aims of this study were to develop suitable predictive models for establishing long-term exposure data on cooking workers. The whole study was conducted in a test chamber with an exhaust hood installed 0.7 m above a deep-frying pan and operated at flow rates of 2.64–5.16 m3 min–1. The cooking process that we selected for testing used peanut oil to deep-fry chicken nuggets at 200°C. An IOM inhalable sampler and an XAD-2 tube were successively used to collect particle- and gas-phase PAHs, respectively. All of the collected samples were analyzed for 21 PAHs using a gas chromatograph (GC) with tandem mass spectrometry (MS/MS). The results showed that the emission rates of the total-PAHs in the gas-phase and the particle-phase were 1.45 × 104 and 2.14 × 102 ng min–1, respectively. The capture efficiencies of the exhaust hood for the total-PAHs were 39.1–76.5%. The resultant fugitive emission rates of the gas-phase and the particle-phase ranged from 3.41 × 103 to 8.82 × 103 and from 5.03 × 101 to 1.30 × 102 ng min–1, respectively. As no significant difference in the sampling results of the total-PAHs was detected between the chef-zone (i.e., the near zone) and the helper-zone (i.e., the far zone), the well-mixed room (WMR) model was adopted for estimating the exposures of all workers. A good correlation (y = 0.134x + 75.3; R2 = 0.860) was found between the model predicted results (x; 3.25 × 102–1.57 × 103 ng min–1) and the field sampling results (y; 1.36 × 102–2.92 × 102 ng min–1), indicating the plausibility of using the proposed approach to establish a long-term exposure databank for the cooking industry.


Keywords: Cooking fumes; Polycyclic aromatic hydrocarbons; Exposure assessment; Model prediction.

 



Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank

Sign up to AAQR Newsletter

Sign up to receive latest research, letters to the editors, and review articles, delivered to your inbox every second week!