Shaojun Liu1,2, Xinning Yu1, Guoxin Lin1, Ruiyang Qu1, Chenghang Zheng1, Xiang Gao This email address is being protected from spambots. You need JavaScript enabled to view it.1

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education of China, College of Power Engineering, Chongqing University, Chongqing 400030, China


 

 

Received: July 20, 2018
Revised: September 28, 2018
Accepted: September 29, 2018

Download Citation: ||https://doi.org/10.4209/aaqr.2018.07.0269  

  • Download: PDF


Cite this article:

Liu, S., Yu, X., Lin, G., Qu, R., Zheng, C. and Gao, X. (2019). Insights into the Effect of Adsorption–Desorption Cycles on SO2 Removal over an Activated Carbon. Aerosol Air Qual. Res. 19: 411-421. https://doi.org/10.4209/aaqr.2018.07.0269


HIGHLIGHTS

  • SO2 removal by AC with high ash content (15.92%) was investigated.
  • Most of stored sulfur-containing species released in the form of SO2 below 400°C.
  • Traces of CO were detected, whose abundant release required higher temperatures.
  • Two deactivation pathways during adsorption-desorption cycles were proposed.
 

ABSTRACT


 The use of an activated carbon (AC) with high ash content (15.92%) for SO2 removal was investigated during adsorption-desorption cycles. Significant deterioration in both dynamic and equilibria adsorption processes during the cycles was observed. To investigate the causes of deactivation, SO2 temperature-programmed desorption (SO2-TPD) experiments were conducted. The results indicated that most of the stored sulfur-containing species were released in the form of SO2 when the temperature was below 400°C. In addition to SO2, traces of CO were detected, but higher temperatures were required for the abundant release of CO. A Fourier-transform infrared spectrometry (FTIR) experiment was used to investigate changes in the oxygen-containing groups, and the results confirmed the formation of stable C-O complexes. These formations were tentatively attributed to the CO precursor’s occupation of active sites. Based on the formation of C-O complexes, two deactivation pathways in the cycles were proposed. The adsorption-desorption cycles also affected the AC ash. The formation of sulfur-containing species in the ash was confirmed through thermodynamic calculation and powder X-ray diffraction.


Keywords: Activated carbon; Adsorption; Desorption; SO2 removal



Aerosol Air Qual. Res. 19 :411 -421 . https://doi.org/10.4209/aaqr.2018.07.0269  


Don't forget to share this article 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank