Wenjing Xie1,2, Meiqing Yu1, Rui Wang 1

  • 1 School of Environmental Science and Engineering, Shandong University, Jinan 250199, China
  • 2 Hainan Research Academy of Environmental Sciences, Haikou 571126, China

Received: December 27, 2016
Revised: April 11, 2017
Accepted: April 16, 2017
Download Citation: ||https://doi.org/10.4209/aaqr.2016.12.0597 


Cite this article:
Xie, W., Yu, M. and Wang, R. (2017). CO2 Capture Behaviors of Amine-Modified Resorcinol-Based Carbon Aerogels Adsorbents. Aerosol Air Qual. Res. 17: 2715-2725. https://doi.org/10.4209/aaqr.2016.12.0597


HIGHLIGHTS

  • Amine-loaded activated carbon aerogels has been developed for 5% CO2 capture.
  • Carbon aerogel was prepared by soft-template, conventional drying and activation.
  • The activated carbon aerogels exhibit high specific surface area and porosity.
  • PEI-loaded activated carbon aerogels show CO2 adsorption capacity of 2.06 mmol g–1.
  • Deactivation and kinetic models were used to analyze the adsorption process.

 

ABSTRACT


Activated carbon aerogel (CA)-based amine-loaded adsorbent has been successfully developed for CO2 capture. The adsorbents were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption/desorption and thermogravimetric analysis (TGA). The CO2 adsorption performance was tested by the fixed bed system at 5% CO2 concentration. The effects of the mass ratio of KOH to CA, type of amine, amine loadings, addition of polyethylene glycol (PEG) or surfactants and adsorption temperature on the CO2 capture performance of amine-loaded activated CA as well as the regeneration capability were examined. The results show that the adsorbents effectively remove 5% CO2 from gas mixtures. The optimum adsorption temperature and amine loadings of polyethyleneimine (PEI)-loaded activated CA are 75°C and 55 wt.% respectively at the activation mass ratio KOH to CA of 1. Under these optimum conditions, the PEI-loaded activated CA reaches the highest adsorption capacity of 2.06 mmol g–1 adsorbent. Addition of PEG facilitates the CO2 adsorption. Suyadal’s and Yasyerli’s deactivation models both fit the experimental breakthrough curves of tetraethylenepentamine (TEPA)-loaded activated CA better than that of PEI-loaded activated CA. The adsorption kinetics nonlinear fitting results show that the adsorption process follows Bangham model.


Keywords: Amine; Kinetics; CO2 adsorption; Carbon aerogel; Deactivation model


Impact Factor: 2.735

5-Year Impact Factor: 2.827


SCImago Journal & Country Rank

Enter your email below to receive latest published articles in your field.