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ABSTRACT 
 

Air-sea interactions have significant impacts on coastal convection and surface fluxes exchange. They are important for 
the spatial and vertical distributions of air pollutants that affect public health, particularly in densely populated coastal 
areas. To understand the impacts of air-sea interactions on coastal air quality predictions, sensitivity simulations with 
different atmosphere-ocean coupling are conducted in this work over southeastern U.S. in July 2010 using the Weather 
Research and Forecasting Model with Chemistry (WRF/Chem). The results show that comparing to WRF/Chem without 
air-sea interactions, WRF/Chem with a 1-D ocean mixed layer model (WRF/Chem-OML) and WRF/Chem coupled with a 
3-D Regional Ocean Modeling System (WRF/Chem-ROMS) predict the domain averaged changes in the sea surface 
temperature of 0.06°C and 0.94°C, respectively for July average. The simulated differences in the surface concentrations 
of O3 and PM2.5 between WRF/Chem-ROMS and WRF/Chem can be as large as 17.3 ppb and 7.9 µg m–3, respectively, 
with the largest changes occurring not only along coast and remote ocean, but also over some inland areas. Extensive 
validations against observations show that WRF/Chem-ROMS improves the predictions of most cloud and radiative 
variables, and surface concentrations of some chemical species such as SO2, NO2, maximum 1-h and 8-h O3, SO4

2–, NH4
+, 

NO3
–, and PM10. This illustrates the benefits and needs of using coupled atmosphere-ocean model with advanced model 

representations of air-sea interactions for regional air quality modeling. 
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INTRODUCTION 
 

3-D regional atmospheric models are often used for 
regional air quality studies at spatial resolutions of 4–36 km. 
Examples of such models include the Weather Research 
and Forecasting model with chemistry (WRF/Chem, Grell 
et al., 2005; Fast et al., 2006; Zhang et al., 2010), the 
Community Multi-scale Air Quality (CMAQ, Binkowski 
and Roselle, 2003; Byun and Schere, 2006) model, and the 
Comprehensive Air Quality Model with Extensions (CAMx, 
ENVIRON, 1998, 2010). Most regional models consist of 
an atmospheric component coupled to a land surface scheme 
and forced by prescribed sea surface temperature (SST) 
over ocean (Chen et al., 2011; Seo et al., 2014). However, 
there is a complicate relationship between SST perturbation 
and the subsequent heating in the atmosphere (Kushnir and 
Held, 1996). For example, SST perturbation can impact 
atmospheric circulation and variability (Brayshaw et al., 
2011; Keeley et al., 2012). As a result, boundary layer 
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conditions are impacted through air-sea interactions, 
resulting in changes in the planetary boundary layer height 
(PBLH), surface temperature, and surface wind. Most 
coastal areas contain dense population. The air pollutants 
such as ozone (O3) and particulate matter (PM) trapped in 
the boundary layer of these regions can have adverse 
impacts on human health and environment. The changes in 
the horizontal SST gradients can impact the surface fluxes 
at atmosphere-ocean interface, which leads to the changes in 
convection and PBLH. Both have significant impacts on the 
temporal and spatial distributions of dust, sea-salt emissions 
and chemical species that in turn affect human health, 
environment, and ecology. As such, it is also important to 
include the representations of air-sea interactions in regional 
air quality studies.  

Modeling air-sea interaction process is an active field of 
research in oceanography. For example, Warner et al. (2010) 
reported the Coupled Ocean-Atmosphere-Wave-Sediment 
Transport (COAWST) Modeling System, which couples 
the atmosphere model WRF (Skamarock et al., 2008), with 
the Regional Ocean Modeling System (ROMS, Shchepetkin 
et al., 2005) (hereafter WRF-ROMS). The coupling system 
has been applied for a number of regional air-sea interaction 
studies (Nelson and He, 2012; Nelson et al., 2014; Zambon 
et al., 2014a, b), with a focus on the effects of air-sea 
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interactions on atmospheric dynamics and ocean circulation. 
While many of these coupled modeling systems (i.e., only 
coupling physical atmosphere with ocean) include prescribed 
or constant chemistry (e.g., prescribed O3 or AOD), little 
work has been done using coupled regional air quality and 
regional ocean model (i.e., coupling both physical and 
chemical atmosphere with ocean). Meteorology is important 
for distribution and concentration of air pollutants (e.g., 
transport of air pollutants, photolysis, and chemical reactions). 
On the other hand, chemical species can influence the 
meteorological and cloud/radiative variables by perturbing the 
atmospheric radiation budget and through cloud properties. In 
this work, building on existing coupled WRF-ROMS 
within the framework of COAWST version 3.1, WRF/Chem 
version 3.6.1 is coupled with ROMS version 3.7 (hereafter 
WRF/Chem-ROMS) in COAWST to study the effects of 
air-sea interactions on regional air quality. The main 
objective in this work is to examine the impacts of air-sea 
interactions on model predictions of meteorology, chemistry, 
and cloud/radiation over coastal regions. 
 
MODEL CONFIGURATIONS AND EVALUATION 
PROTOCOLS 
 
Model Description and Setup 

The WRF/Chem model (Grell et al., 2005; Fast et al., 
2006) is used in this work to represent the atmospheric 
conditions. It is based on WRF/Chem version 3.6.1 with 
additional modifications and updates by Wang et al. 
(2015a). The major updates include (1) the coupling of the 
2005 Carbon Bond (CB05) gas-phase (Yarwood et al., 2005; 
Sarwar et al., 2008) with the existing Modal of Aerosol 
Dynamics in Europe with the Volatility Basis Set approach 
for simulating secondary organic aerosol (SOA) (MADE-
VBS, Grell et al., 2005; Ahmadov et al., 2012); (2) 
incorporating the aqueous chemistry (AQChem) module of 
CMAQ version 5.0 (Sarwar et al., 2011) into WRF/Chem. 
This new chemistry-aerosol option of CB05-MADE/VBS 
has been coupled with existing model treatments and 
demonstrated its capability to simulate chemistry-aerosol-
radiation-cloud feedbacks such as aerosol semi-direct effects 
on photolysis rates of major gases, aerosol indirect effects 

on cloud droplet numbers, and cloud effects on shortwave 
radiation (Yahya et al., 2014; Wang et al., 2015a, b; Yahya 
et al., 2015). In this work, this chemistry-aerosol option of 
CB05-MADE/VBS is applied for all the WRF/Chem 
simulations.  

Table 1 shows the simulations conducted in this work. 
The WRF/Chem simulations are conducted over southeastern 
U.S. for July 2010, with a 12-km horizontal resolution 
(i.e., 160 × 210 grid cells) and a vertical resolution of 35 
layers from the surface to 100 hPa, with a surface layer 
model height of 38 m. The emissions for WRF/Chem are 
from Wang et al. (2015b), which is based on the 2008 
National Emission Inventory (NEI) (version 2, released 
April 10, 2012). The meteorological initial and boundary 
conditions (ICs and BCs) are generated from the National 
Center for Environmental Prediction Final Analysis 
(NCEP-FNL) and the chemical ICs and BCs are from the 
Community Earth System Model (CESM) every 6-hour 
output (He et al., 2015). The physics options used for all 
the simulations in this work are summarized in Table 1 of 
Wang et al. (2015a), except for the cumulus parameterization 
scheme. In Wang et al. (2015a) (refer to as W15 hereafter), 
the cumulus parameterization scheme was based on Grell 
3D ensemble scheme (referred to as G3D, Grell and 
Devenyi, 2002; Grell and Freitas, 2014), which allows for 
a series of different assumptions that are commonly used 
in convective parameterizations and includes options to 
spread subsidence to neighboring grid points. This work 
uses the cumulus parameterization scheme of Grell and 
Freitas (2014) (referred to as GF scheme), which allows 
for subgrid scale convection representation. The choice of 
GF scheme is based on the comprehensive comparison of 
model results between simulations with G3D scheme (i.e., 
W15) and GF scheme (i.e., SEN1) (see Table 1). The rational 
of such a choice and relevant performance evaluation can 
be found in the supplementary material (see Tables S1(a)–
1(b), and Figs. S1(a)–1(b) and S2(a)–2(b)). In addition to the 
options listed in Table 1 of W15, SEN1 includes prescribed 
SST forcing from NCEP by updating every 6-hour.  

SEN2 is configured same as SEN1 but with the 1-
dimentional (1-D) ocean mixed layer (OML) model of 
Pollard et al. (1973) turned on (hereafter WRF/Chem-OML). 

 

Table 1. Simulation Design. 

Run Index Description Purpose 
W15 Based on Wang et al. (2015a), NCSU’s 

version of WRF/Chem v3.6.1 with the G3 
cumulus parameterization  

Served as baseline 

SEN1 Same as W15, but with the GF cumulus 
parameterization  

The differences between SEN1 and W15 indicate the impacts 
of different cumulus parameterizations on model predictions; 
Served as the baseline to investigate the impacts of 
atmosphere-ocean coupling using 1-D OML and 3-D ROMS.

SEN2 Same as SEN1, but with WRF/Chem with 
the 1-D ocean mixed layer model 
(WRF/Chem-OML) 

The differences between SEN2 and SEN1 indicate the impacts 
of 1-D ocean mixed layer model on model predictions 

SEN3 Same as SEN1, but with WRF/Chem 
coupled with ROMS within the COAWST
frame work (WRF/Chem-ROMS) 

The differences between SEN3 and SEN1 indicate the impacts 
of the atmosphere-ocean coupling on model predictions 
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The 1-D OML model includes the wind-driven ocean mixing 
and mixed layer deepening process. The surface wind stress 
generates currents in the ocean mixed layer (typically 30–
100 m deep), which leads to mixing with cooler water 
below. The model does not consider the pressure gradients 
or horizontal advection, but does include the Coriolis effect, 
which is important for the rotation of inertial currents and 
SST cooling. The 1-D OML model represents a simple 
balance between the local rate of change of ocean temperature 
and the net surface heat flux. Negative (positive) net heat 
flux leads to a cooling (warming) trend of ocean temperature, 
which in turn affects marine boundary layer stability, air 
temperature, and surface wind distributions (e.g., Chelton 
et al., 2007). The initial mixed layer depth (i.e., 50 m) and 
temperature lapse rate (i.e., 0.14 K m–1) are specified in the 
model for the entire domain, which is a main source of 
uncertainty considering spatial variations. The OML model 
is called every model time step (i.e., 60 seconds) across every 
grid point and the SST is then fed back into the atmospheric 
model (i.e., WRF/Chem).  

SEN3 has the same WRF/Chem configuration as SEN1, 
but with fully coupling with ROMS (updated through August 
2014) (i.e., WRF/Chem-ROMS). ROMS is a 3-dimentional 
(3-D), free-surface, hydrostatic, and primitive equations 
ocean model, which uses vertically stretched terrain-
following (σ) coordinates combined with advanced physics 
packages to allow simulation of advective processes, Coriolis, 
and viscosity in 3-dimensions. It includes the high-order 
advection and time-stepping schemes, weighted temporal 
averaging of the barotropic mode, conservative parabolic 
splines for vertical discretization, and the barotropic pressure 
gradient term, which can be applied for estuarine, coastal and 
basin-scale oceanic processes (Marchesiello et al., 2003; He 
and Wilkin, 2006; He et al., 2008). The COAWST (Warner 
et al., 2010) modeling system is designed to enable the 
integration of oceanic, atmospheric, wave, and morphological 
processes in the coastal ocean. It consists of three state-of-
the-art numerical models representing the atmosphere (i.e., 
WRF), ocean (i.e., ROMS) and wave (i.e., Simulating WAves 
Nearshore, SWAN) conditions as well as the sediment 
transport representation using the Model Coupling Toolkit 
(MCT). COAWST represents the frontier in regional air-
sea interaction modeling. There are different options to 
configure the model with the coupling of WRF and ROMS 
only, the coupling of WRF, ROMS, and SWAN, or with 
all components turned on. In this work, only the WRF and 
ROMS coupling is turned on. The coupling of WRF/Chem-
ROMS (i.e., SEN3) is within the framework of COAWST, 
via MCT as the coupler. 

The original COAWST system is configured for a two-
way coupling only between WRF and ROMS. In this work, 
NCSU’s version of WRF/Chem replaces WRF and is coupled 
with ROMS within the COAWST system to provide insights 
about the effects of air-sea interactions on coastal air 
quality. ROMS is configured on the same grid resolution 
as WRF/Chem with 157 interior density (ρ) points in the Y 
direction and 207 interior ρ points in the X direction, and 
with 16 layers vertically in the ocean. The initial and 
boundary conditions are from the global HYbrid Coordinate 

Ocean Model (HYCOM) combined with the Navy Coupled 
Ocean Data Assimilation (NCODA) (http://tds.hycom.org/ 
thredds/catalog.html). HYCOM is a high resolution global 
analysis dataset (1/12°) with data frequency on a daily 
basis. This resolution is very close to the grid resolution of 
12-km used in this work. For other datasets, they either 
have relatively coarse grid resolutions (e.g., the Simple 
Ocean Data Assimilation, SODA, http://www.atmos.umd. 
edu/~ocean/data.html) or their data frequency is on a 
monthly basis (e.g., the Global Ocean Physical Reanalysis 
System, GLORS, http://www.cmcc.it/it/models/c-glors-the-
cmcc-global-ocean-physical-reanalysis-system), which can 
result in large biases when they are interpolated into the 
model grid resolution or time period. The coastline and 
bathymetry are extracted from the Global Self-consistent 
Hierarchical High-resolution Shorelines (GSHHS), and 5-
Minute Gridded Global Relief Data Collection (ETOPO5), 
respectively. Fig. 1 shows a diagram of the coupling 
WRF/Chem with ROMS within the COAWST framework. 
ROMS is coupled with WRF through MCT. SST is computed 
inside ROMS and then passed to WRF/Chem. Meanwhile, 
several variables are passed from WRF/Chem to ROMS, 
including net heat flux and wind stress. The time step for 
ROMS calculation is 30 seconds and the time frequency 
for the WRF/Chem-ROMS coupling is 10 minutes. This 
study focuses on the synoptic, meso-scale dynamics of both 
ocean and atmosphere, which require the coupled modeling 
system to resolve air-sea flux exchange process as frequently 
as computationally possible. The choice of 10 mins provides a 
good balance between the model physics and computational 
demands associated with system coupling. The simulations 
are conducted for entire July 2010, with 7 days (June 24–30, 
2014) for spinup. The model output frequency is hourly. 

Unlike SEN1 that does not include any air-sea 
interactions, both SEN2 and SEN3 include air-sea interactions 
but with varying degrees of details. Fig. 2 shows the 
schematic diagram of major atmospheric processes treated 
in SEN1, SEN2, and SEN3 and major processes associated 
with air-sea interactions that affect coastal air quality 
treated in SEN2 and SEN3. As shown in Fig. 2, air-sea 
interactions affect marine boundary layers through exchange 
of heat and momentum fluxes, which would further affect 
large scale circulation, cloud formation, and precipitation. 
Over coastal areas, emissions over both inland areas (e.g., 
biogenic emissions and anthropogenic emissions) and 
oceanic areas (e.g., emissions from shipping and natural 
sources such as sea spray and phytoplankton) can generate 
secondary air pollutants through chemical transformation 
(e.g., photochemical oxidation, nighttime chemistry) and 
aerosol microphysics (e.g., gas-to-particle conversion) (note 
that emissions from phytoplankton are not included in this 
work). Air pollutants can further affect cloud properties 
through chemical reactions (e.g., heterogeneous and aqueous-
phase chemical reactions) or microphysical processes (e.g., 
condensation/evaporation, aerosol activation, ice nucleation). 
They can be transported through large-scale circulation or 
long-range transport, and removed from atmosphere 
through dry and wet deposition. The coupling of air-sea 
interactions can provide more comprehensive representations 
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Fig. 1. Diagram of WRF/Chem-ROMS coupling within COAWST. The net heat flux and wind stress are passed from WRF 
to ROMS. The sea surface temperature (SST) is passed from ROMS to WRF. WRF passes predictions of meteorology to 
its chemistry package. Chemical predictions are passed from the chemistry package to WRF. The two-way coupling 
between WRF/Chem allows the simulation of feedbacks between chemistry/aerosol and meteorological variables. The 
two-way coupling between WRF and ROMS allows dynamic interactions between atmosphere and ocean. 
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Fig. 2. The schematic diagram of processes associated with air-sea interactions that affect coastal air quality. In atmosphere, 
the yellow arrows represent the shortwave and longwave radiation. The blue arrows represent all other physical and 
chemical processes. In ocean, the temperature profile by SEN2 (i.e., 1-D ocean mixed layer model) (in blue) uses specified 
temperature lapse rate below mixed layer from observations or climatology. The temperature profile by SEN3 (i.e., the 3-D 
ROMS model) (in red) calculates temperature lapse rate below mixed layer in ROMS. SEN3 also includes horizontal 
advection and Ekman transport processes (in red), which are not included in SEN2. 
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of associated processes for coastal air quality study. Fig. 2 
also shows the main difference between SEN2 and SEN3, 
which is the calculation for ocean temperatures below mixed 
layer. While SEN2 uses specified temperature lapse rate from 
observations or climatology, SEN3 calculates temperature 
lapse rate in ROMS. In addition, SEN3 includes horizontal 
advection and Ekman transport processes, which are not 
included in SEN2. Such differences between SEN2 and 
SEN 3 will affect simulations of SST gradients and the 
exchanges for heat fluxes and momentum fluxes between 

atmosphere and ocean surface. 
 

Available Measurements and Evaluation Protocols 
A number of observational datasets from surface networks 

and satellites are used for model evaluation. They are 
summarized along with the variables to be evaluated in 
Table 2. Meteorological variables such as temperature at 2-m 
(T2), relative humidity at 2-m (RH2), wind speed at 10-m 
(WS10), and wind direction at 10-m (WD10) are evaluated 
against observations from the National Centers for 

 

Table 2. Datasets for Model Evaluation. 

Species/Variables Dataset Spatial (Temporal) Resolution 
Temperature at 2-m (T2), Relative humidity at 

2-m (RH2), Wind speed at 10-m (WS10)  
Land: NCEI, SEARCH; 

Ocean: NDBC 
400 sites (hourly), 7 sites (hourly); 

15 sites (hourly) 
Wind direction at 10-m (WD10) NCEI 400 sites (hourly) 
Planetary boundary layer height (PBLH) NCEP/NARR 32-km (monthly) 
Sea surface temperature (SST), sensible heat flux 

(SHFLX), latent heat flux (LHFLX) 
OAFlux 1° (monthly) 

Precipitation (Precip) GPCP, TMAP 2.5° (monthly), 0.25° (daily) 
Outgoing longwave radiation (OLR), Downwelling 

longwave radiation (LWD), Downwelling 
shortwave radiation (SWD), Shortwave cloud 
radiative forcing (SWCF), Longwave cloud 
radiative forcing (LWCF) 

CERES-EBAF 1° (monthly) 

Cloud fraction (CF), Cloud optical thickness 
(COT), Cloud liquid water path (LWP) 

CERES-SYN1deg 1° (monthly) 

Precipitating water vapor (PWV), Aerosol optical 
depth (AOD), Column cloud condensation 
nuclei (ocean) at S = 0.5% (CCN5), 

MODIS 1° (monthly) 

Cloud droplet number concentration (CDNC) Bennartz (2007) 1° (monthly) 
Max 1-h Ozone (O3), Max 8-h O3 CASTNET, AIRS-AQS 38 sites (hourly), 420 (hourly) 
Hourly O3 AIRS-AQS, SEARCH 420 (hourly), 7 sites (hourly) 
Sulfur dioxide (SO2), Nitric acid (HNO3) CASTNET 38 sites (weekly) 
Carbon monoxide (CO), Nitrogen dioxide (NO2) SEARCH 7 sites (hourly) 
Sulfate (SO4

2–), Ammonium (NH4
+), Nitrate (NO3

–) CASTNET, IMPROVE, STN 38 sites (weekly), 29 sites (3-day), 
74 sites (3-day to weekly) 

Organic carbon (OC) IMPROVE, SEARCH 29 sites (3-day), 7 sites (daily) 
Elementary carbon (EC), Total carbon (TC) IMPROVE, STN, SEARCH 29 sites (3-day), 74 sites (3-day to 

weekly) 7 sites (daily) 
Particulate matter with diameter less than and 

equal to 2.5 µm (PM2.5) 
IMPROVE, STN, SEARCH 29 sites (3-day), 74 sites (3-day to 

weekly), 7 sites (daily) 
Particulate matter with diameter less than and 

equal to 10 µm (PM10) 
AIRS-AQS 53 sites (hourly) 

Tropospheric CO MOPITT 1° (monthly) 
Tropospheric SO2, NO2 SCIAMCHY 0.25° (monthly) 
Tropospheric ozone residual (TOR) OMI/MLS 1.25° (monthly) 

NCEI: National Centers for Environmental Information; NDBC: National Data Buoy Center; NCEP/NAAR: National 
Centers for Environmental Prediction and North American Regional Reanalysis; OAFlux: Objectively Analyzed Air-Sea 
Fluxes; GPCP: the Global Precipitation Climatology Project; TMAP: Multi-satellite Precipitation Analysis from the 
Tropical Rainfall Measuring Mission; CERES-EBAF: Clouds and Earth's Radiant Energy System Energy Balanced And 
Filled data product; CERES-SYN1deg: CERES Synoptic product at 1° spatial resolution; MODIS: Moderate Resolution 
Imaging Spectroradiometer; OMI/MLS: the Aura Ozone Monitoring Instrument in combination with Aura Microwave 
Limb Sounder; MOPITT: the Measurements Of Pollution In The Troposphere; the Global Ozone Monitoring Experiment; 
SCIAMCHY: the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY; CASTNET: Clean Air 
Status and Trends Network; IMPROVE: Interagency Monitoring of Protected Visual Environments; STN: Speciation 
Trends Network; SEARCH: Southeastern Aerosol Research and Characterization; AIRS-AQS: the Aerometric Information 
Retrieval System-Air Quality System. 
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Environmental Information (NCEI, ftp://ftp.ncdc.noaa.gov/ 
pub/data/noaa). Daily precipitation rate (Precip) is 
evaluated against estimations from the Global Precipitation 
Climatology Project (GPCP, http://www.esrl.noaa.gov/psd/ 
data/gridded/data.gpcp.html) and the Multi-satellite 
Precipitation Analysis from the Tropical Rainfall Measuring 
Mission-Multi-satellite Precipitation Analysis (TMPA, 
http://disc.sci.gsfc.nasa.gov/gesNews/trmm_v7_multisat_p
recip). Radiative variables such as outgoing longwave 
radiation (OLR), downwelling shortwave radiation (SWD), 
downwelling longwave radiation (LWD), shortwave cloud 
forcing (SWCF), and longwave cloud forcing (LWCF) are 
evaluated against satellite retrievals from the Clouds and 
Earth's Radiant Energy System (CERES) Energy Balanced 
And Filled data product (CERES-EBAF, http://ceres.larc. 
nasa.gov/compare_products.php). Cloud properties such as 
cloud fraction (CF), cloud optical thickness (COT), and 
cloud liquid water path (LWP) are also evaluated against 
satellite retrievals from the CERES Synoptic product at 1° 
spatial resolution (CERES-SYN1deg, http://ceres.larc.nasa. 
gov/compare_products.php). Other related variables such 
aerosol optical depth (AOD), precipitating water vapor 
(PWV), and cloud condensation nuclei at supersaturation 
of 0.5% (CCN5) are evaluated against satellite retrievals 
from the Moderate Resolution Imaging Spectroradiometer 
(MODIS, https://ladsweb.nascom.nasa.gov/data/search.html) 
and cloud droplet number concentration (CDNC) is evaluated 
against MODIS-derived CDNC from Bennartz (2007). Air-
sea interaction related variables are evaluated including SST 
and WS10 from the National Data Buoy Center (NDBC, 
http://www.ndbc.noaa.gov/); PBLH derived from the 
National Centers for Environmental Prediction (NCEP)/ 
North American Regional Reanalysis (NARR, http://www. 
esrl.noaa.gov/psd/data/gridded/data.narr.html); SST, sensible 
heat flux (SHFLX) and latent heat flux (LHFLX) derived 

from the Objectively Analyzed Air-Sea Fluxes (OAFlux, 
http://oaflux.whoi.edu/dataproducts.html).  

Surface chemical concentrations evaluated include O3, 
sulfur dioxide (SO2), nitric acid (HNO3), particulate matter 
with diameter less and equal to 2.5 µm (PM2.5) and 10 µm 
(PM10), and PM2.5 components such as sulfate (SO4

2–), 
ammonium (NH4

+), nitrate (NO3
–), sodium (Na+), chloride 

(Cl–), elementary carbon (EC), and organic carbon (OC). 
These species are observed from various observational 
networks over southeastern U.S., such as the Clean Air 
Status and Trends Network (CASTNET), the Interagency 
Monitoring of Protected Visual Environments (IMPROVE), 
the Speciation Trends Network (STN), the Aerometric 
Information Retrieval System-Air Quality System (AIRS-
AQS), and the Southeastern Aerosol Research and 
Characterization (SEARCH). The locations of these sites are 
plotted in Fig. 3. Column concentrations are evaluated over 
southeastern U.S., including tropospheric carbon monoxide 
(CO) retrieved from the Measurements Of Pollution In The 
Troposphere (MOPITT, https://www2.acom.ucar.edu/mopitt), 
tropospheric nitrogen dioxide (NO2) retrieved from the 
SCanning Imaging Absorption spectroMeter for Atmospheric 
CHartographY (SCIAMACHY, http://www.sciamachy.org/), 
and tropospheric O3 residual (TOR) retrieved from the 
Aura Ozone Monitoring Instrument in combination with 
Aura Microwave Limb Sounder (OMI/MLS, http://acdb-
ext.gsfc.nasa.gov/Data_services/cloud_slice/new_data.html). 
The protocols for performance evaluation include spatial 
distributions and statistics, following the approach of 
Zhang et al. (2006, 2009). The analysis of the performance 
statistics focuses on mean bias (MB), normalized mean 
bias (NMB), normalized mean error (NME), root mean 
square error (RMSE), and correlation coefficient (Corr). 
The definitions of those statistics can be found in Yu et al. 
(2006) and Zhang et al. (2006). 

 

 
Fig. 3. Chemical observational sites including IMPROVE, CASTNET, STN, AIRS-AQS, and SEARCH in the study 
domain. 



 
 
 

He et al., Aerosol and Air Quality Research, 18: 1044–1067, 2018 1052 

SIMULATION RESULTS AND EVALUATION 
 
Impacts of 1-D Ocean Mixed Layer Coupling 
Impacts on Meteorology 

Fig. 4 shows the NMBs of model predictions for major 
meteorological and cloud variables (detailed statistics are 
shown in Table S1(a) in the supplementary material). As 
shown in Fig. 4, with the 1-D OML coupling in SEN2, the 
predictions of most meteorological, cloud, and radiative 
variables are comparable to SEN1. As shown in Table S1(a), 
the prescribed SSTs in SEN1 agree well with observations 
from OAFlux, with a mean bias of 0.2°C and an NMB of 
0.6%. SST is well predicted in SEN2, with a mean bias of 
0.1°C and an NMB of 0.4%. The RMSEs of SST against 
OAFlux are about 1.0°C in both SEN1 and SEN2. SEN1 is a 
forced simulation with prescribed SST from NCEP, whereas 
SST is prognostic in SEN2 with SST updated every model 
time step (i.e., 60 seconds) and every 10-min, respectively. 
However, the coupling with the 1-D OML causes very small 
changes in the simulated SST. The simulated SST from 
SEN2 is quite similar to those based on the NCEP reanalysis 
data. The 1-D OML model represents the cooling of SST 
due to deep mixing of the ocean layers below with stably 
stratified cooler water. The simplified representation of air-

sea interaction in 1-D OML could leads to SST deviations. 
For example, the initial mixed layer depth (i.e., 50 m) and 
temperature lapse rate (i.e., 0.14 K m–1 are specified in the 
model for the entire domain, which is a main source of 
uncertainty considering the special heterogeneity. 

Figs. 5(a) and 5(b) compare monthly-averaged satellite 
observations/reanalysis data with model predictions. As 
shown in Fig. 5(a), both SEN1 and SEN2 give warm SST 
bias for Gulf Stream, which can increase evaporation and 
convective instability. As a result, an atmospheric circulation 
that produces moisture convergence and convection occurs 
in response to SST gradients. Compared to NCEP/NARR 
reanalysis data, both SEN1 and SEN2 overpredict PBLH 
over ocean, with NMBs of 16.2%, and 16.0%, respectively. 
The biases in PBLH can be due in part to different methods 
for calculating PBLH in the NCEP models (e.g., the Global 
Forecast System and North American Model) and WRF. 
Also, Seidel et al. (2012) found that the NCEP reanalysis 
data showed deeper PBLH due to difficulty in simulating 
stable conditions compared with radiosonde observations. 
Therefore, the performance of PBLH here can only represent 
the deviation from the NCEP models. LHFLX is largely 
overpredicted in both SEN1 and SEN2, with NMBs of 60.1% 
and 60.7%, respectively. Similarly, SHFLX (Figure not

 

Land Ocean 

Fig. 4. The normalized mean bias (NMB, %) of major meteorological and cloud variables from SEN1 (WRF/Chem 
standalone without coupling ocean model), SEN2 (WRF/Chem coupling with 1-D ocean mixing layer model), and SEN3 
(WRF/Chem coupling with 3-D ROMS) over land (left column) and ocean (right column). T2: temperature at 2-m; RH2: 
relative humidity at 2-m; WS10: wind speed at 10-m, Precip: daily precipitation rate; PBLH: planetary boundary layer 
height; SWD: downwelling shortwave radiation; SST: sea surface temperature; LHFLX: latent heat flux; CF: cloud fraction; 
COT: cloud optical thickness; CDNC: cloud droplet number concentration; LWP: cloud liquid water path; SWCF: shortwave 
cloud forcing; LWCF: longwave cloud forcing; CCN5: cloud condensation nuclei at supersaturation of 0.5% (CCN5). 
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shown) is also largely overpredicted in both SEN1 and SEN2, 
with NMBs of 138.2% and 140.7%, respectively. The large 
over predictions in LHFLX and SHFLX are associated with 
the large differences in specific humidity and temperature 
between atmosphere and ocean interface predicted in SEN1 
and SEN2. Due to the simplified assumptions and treatments 
in 1-D OML, the impacts on SWD is small, with a domain 
average of decrease by 0.5 W m–2.  

Compared to GPCP data, precipitation is largely 
overpredicted over ocean in both SEN1 and SEN2, with 
NMBs of 211.5% and 210.3%, respectively. The 
overpredictions of precipitation over ocean are likely due 
in part to the uncertainties in the convective precipitation 
associated with the cumulus scheme (He et al., 2017) and 
the satellite retrievals. Due to the limited impacts of 1-D 
OML on meteorology, the impacts on clouds are also very 
small. The predictions of most cloud variables are comparable 
in SEN1 and SEN2 as shown in Figs. 4 and 5(b). Both 
SEN1 and SEN2 underpredict cloud variables such as COT 
and LWP over land, possibly due to less cloud formed in 
the model, which is common in the applications of WRF 
reported in previous studies (e.g., Wang et al., 2015a; 
Thompson et al., 2016). Meanwhile, both SEN1 and SEN2 
overpredict COT and LWP over ocean, due in part to more 
cloud formed in the model. The overpredictions of CDNC 
by both SEN1 and SEN2 are not well representative in this 
work, since there are only a few grid cells in the MODIS-
derived CDNC data that contain valid observations. 

 
Impacts on Atmospheric Pollutants 

Fig. 6 shows the absolute differences between SEN2 and 
SEN1 for monthly-averaged surface chemical predictions. 
The results from SEN1 are shown in Fig. S3. With 1-D 
OML model, the changes of most surface chemical species 
are small. For example, the differences in surface CO 
mixing ratios between SEN2 and SEN1 are within 11 ppb 
(or within 3%). The absolute differences in surface mixing 
ratios of SO2, NO2, and O3 are within 2 ppb, and the 
percentage differences can be as large as 29.8%, 14.4%, and 
6.5%, respectively. Although the absolute differences in 
surface concentrations of SO4

2–, SOA, sea-salt, PM2.5, and 
PM10 are within 1.5 µg m–3, the percentage differences can 
be as large as 20.2%, 757.5%, 48.6%, 9.0%, and 11.7%, 
respectively. The large value of 757.5% by SOA is caused 
by very low SOA concentration predicted in the model. 
Therefore, a small change in SOA concentration can lead 
to a large percentage difference. The relatively large change 
of SOA concentrations up to 0.4 µg m–3 in SEN2 is likely 
due to higher OH levels (Figure not shown) and lower 
PBLH over southeastern domain (e.g., 31–34°N).  
 
Impacts of 3-D Ocean Model Coupling 
Impacts on Meteorology 

As shown in Figs. 5(a) and 5(b), unlike the small impacts 
on model predictions with the 1-D OML coupling, the 
impacts with atmosphere-ocean coupling by SEN3 affect 
boundary layer properties more significantly. As shown in 
Fig. 4 and Table S1(a), SST is slightly underpredicted in 
SEN3, with an NMB of –2.8%, and a RMSE of 1.5°C in 

SEN3, with a larger cold bias than the warm biases in SEN1 
and SEN2. The cold bias for SST in SEN3 can be attributed 
in part to the lower ICs and BCs from HYCOM-NCODA, 
and in part to the use of a coarse vertical resolution in the 
ocean layers used in HYCOM (Hofmeister et al., 2010; 
Shapiro et al., 2013) and ROMS, as well as possible weak 
southward currents from ROMS. A comparison of SST 
predictions from HYCOM with satellite retrievals indicates 
lower values from this model, especially near the coast, 
due likely to the inherent uncertainties in the model setting 
(e.g., the surface layer depth used for SST calculation is 
larger in the simulations at a coarse grid resolution than at 
a fine grid resolution). For example, Bernie et al. (2005) 
found that 90% of the observed diurnal SST can be captured 
by high temporal and vertical resolutions (e.g., the vertical 
resolution of 1-m in the upper ocean and the temporal 
resolution of more than 3-h for surface fluxes). In addition, 
the poor representation of the Gulf Stream and North Atlantic 
Current in the ocean models (e.g., Willebrand et al., 2001; 
Eden et al., 2004) can also contribute to the biases in SST. 

Compared to NCEP/NARR reanalysis data, SEN3 
predicts PBLH well, with an NMB of –3.1%. The decreases 
in PBLH in SEN3 compared to SEN1 are associated with 
lower SST, which results in less evaporation and less 
convective instability. Therefore, the boundary layer is more 
stable predicted by SEN3 than SEN1. LHFLX depends on 
the difference in sea-air specific humidity (i.e., Qs – Qa). 
Since Qa in SEN3 is lower than that in SEN1 over ocean, 
and Qs is SST-dependent, the LHFLX-SST correlation is 
positive, suggesting the dominance of oceanic forcing (i.e., 
the decrease of Qs due to the changes in SST is dominant) 
of atmosphere in the western Atlantic Ocean. The significant 
differences of WS10 between SEN3 and SEN1 (Figure not 
shown) are mainly over open ocean and Gulf of Mexico, 
with a domain average of –0.2 m s–1 up to –2.1 m s–1, which 
is mainly attributed to changes induced by SST. Cold water 
surface increases atmospheric stability, which decouples the 
surface winds from the stronger winds aloft and reduces 
surface wind speed. Due to all above changes, compared to 
SEN1, SEN3 predicts lower LHFLX with a domain averaged 
decrease of 27.8 W m–2. With the coupling of 3-D ocean 
model, SWD increases with a domain average of 9.7 W m–2. 
The increases of SWD in SEN3 are mainly due to reduced 
cloud fractions (mainly over ocean) through impacts of air-
sea interactions. For example, colder SST in SEN3 leads to 
less evaporation and therefore less moisture available for 
cloud formation. As a result, the predictions of SWD are 
improved, with an NMB of –20.6% by SEN1 to –13.7% by 
SEN3.  

Compared to GPCP data, total precipitation is still 
largely overpredicted over ocean in SEN3, but is significantly 
improved, with an NMB reducing from 211.5% (in SEN1) 
to 119.2% (in SEN3). Compared to TMPA data, total 
precipitation is moderately overpredicted over ocean in 
SEN3, with an NMB of 60.6%. The lower precipitation in 
SEN3 than SEN1 is probably due to the changes in 
moisture flux convergence through large-scale changes in 
the circulation field and SST predicted by ROMS (Keeley 
et al., 2012). The overpredictions of total precipitation 
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over ocean are likely due in part to the uncertainties in the 
convective precipitation associated with the restoration 
stability (He et al., 2017) and the satellite retrievals. 
Detailed model statistics can be found in Table S1(a) in the 
supplementary material. 

 
Impacts on Clouds 

Unlike the comparable model predictions for most cloud 
variables between SEN1 and SEN2, SEN3 improves 
substantially the model’s performance for the predictions 
of most cloud variables, especially over ocean. As shown 
in Fig. 5(b), compared to SEN1, monthly-averaged column 
concentration of CCN5 is lower in SEN3 over most 
domain, with a domain averaged decrease of 3.0 × 10–7 cm–2. 
Compared to MODIS data, column concentration of CCN5 
over ocean is underpredicted by both SEN1 and SEN3, 
with NMBs of –0.8% and –12.7%, respectively. The 
underpredictions of CCN5 are likely due to the inaccurate 
predictions of aerosol number concentrations, and 
uncertainties in the cloud thermodynamics. Compared to 
SEN1, SEN3 predicts higher COT up to 62.2, and lower 
COT up to 87.4, with a domain averaged decrease of 4.2. 
Compared to satellite data, both SEN1 and SEN3 
underpredict COT over land, with NMBs of –39.5% and 
–39.8%, respectively, and they overpredict COT over ocean, 
with NMBs of 64.6% and 37.5%, respectively. The biases in 
COT predictions are likely due to the model uncertainties 
in cloud dynamics and thermodynamics, aerosol-cloud 
interactions, as well as satellite retrievals. Compared to 
SEN1, SEN3 predicts higher SWCF up to 21.0 W m–2 over 
land, and lower SWCF up to 77.9 W m–2 over ocean, with a 
domain averaged decrease of 11.4 W m–2. The decrease of 
SWCF in SEN3 is mainly due to the decreases of COT and 
LWP in SEN3. Compared to satellite data, the prediction of 
SWCF is improved over ocean significantly, with NMBs 
from 112.5% in SEN1 to 78.5% in SEN3. 

Other cloud/radiative variables are also improved over 
ocean. For example, CF is improved over ocean, with 
NMBs from 42.3% in SEN1 to 36.7% in SEN3. The 
decreases in CF by SEN3 are mainly due to less available 
moisture for cloud formation through air-sea interactions. 
As a result, LWP also decreases (especially over ocean), 
with NMBs from 35.1% in SEN1 to –29.2% in SEN3. Due 
to the improved cloud predictions, the performance of most 
radiative variables in SEN3 is also improved over ocean. 
For example, the prediction of SWD is improved over ocean 
with NMBs from –20.6% in SEN1 to –13.7% in SEN3. 
Predictions of OLR and LWCF are improved over ocean as 
well, with NMBs reduced from –20.7% in SEN1 to –16.8% 
in SEN3, and from 141.4% in SEN1 to 107.7% in SEN3, 
respectively. A detailed model statistical performance can 
be found in Table S1a in the supplementary material. 

 
Impacts on Atmospheric Pollutants 

Fig. 7 shows the absolute differences between SEN3 and 
SEN1 for monthly-averaged surface chemical predictions. 
With the coupling of 3-D ROMS, the changes in the 
concentrations of most surface chemical species in SEN3 
are much larger than with coupling of 1-D OML in SEN2, 

relatively to SEN 1. For example, surface CO mixing ratios 
can increase as large as 196.5 ppb and decrease as large as 
304.9 ppb. Although the absolute differences in the surface 
mixing ratios of SO2 and OH between SEN1 and SEN3 are 
within 1.5 ppb, the percentage differences in the surface 
mixing ratios of SO2 and OH can be as large as 134.4% 
and 83.6%, respectively. The changes of the surface mixing 
ratios of NO2 and O3 are also significant, which can be as 
large as 18.0 ppb (or 189.2%) and 17.3 ppb (or 44.8%), 
respectively. The decreases of the mixing ratios of CO, SO2, 
and NO2 are likely due in part to the enhanced oxidation 
with higher OH concentrations in SEN3. The increase in 
OH concentrations can be attributed to the decrease of 
precipitation and PBLH, and the increase of SWD in 
SEN3. Compared to SEN1, surface SO4

2– concentrations 
predicted by SEN3 can increase as large as 0.9 µg m–3 and 
decrease as large as 1.2 µg m–3. The changes in surface 
SO4

2– predictions are mainly due in part to changes in the 
mixing ratios of SO2 and OH through gas-phase oxidation, 
changes in cloud fraction through aqueous-phase chemistry, 
and changes in precipitation (e.g., intensity and duration). 
Surface SOA predicted by SEN3 can increase as large as 
0.7 µg m–3 and decrease as large as 1.5 µg m–3. The changes 
in SOA predictions are likely due to the combined changes 
in OH mixing ratios, precipitation, SWD, and PBLH. There 
are similar patterns in changes of surface concentrations of 
PM2.5 and PM10 over land. Both PM2.5 and PM10 increase 
over 30–33°N, and decrease over 33–40°N. The increase 
of PM2.5 can be as large as 3.0 µg m–3 and the decrease of 
PM2.5 can be as large as 7.9 µg m–3. The changes of PM2.5 
over land are mainly due to the changes in SO4

2–, NH4
+, 

and SOA, which can be attributed to the changes in 
precipitation and PBLH over land, and the changes of 
PM2.5 over ocean are mainly due to the changes in SO4

2–, 
NH4

+, NO3
–, SOA, and sea-salt, which can be attributed to 

the combined effects of changes in precipitation, PBLH, 
and WS10. The decreases of PM10 over remote ocean are 
mainly due the decreases in sea-salt predictions resulted 
from lower WS10 in SEN3 than SEN1. As shown in Fig. 7, 
the most significant changes in surface chemical predictions 
are along coast, over remote ocean, and part of inland 
regions, indicating the significant impacts of air-sea 
interactions on air quality. The changes in surface chemical 
predictions over inland regions are mainly caused by the 
changes in meteorology (e.g., T2, PBLH, WS10, WD10, 
SWD, and precipitation) over these regions resulted from 
the coupling of ROMS with WRF/Chem.  

The student’s t-tests are also conducted for differences 
in monthly-averaged surface O3 and PM2.5 between SEN3 
and SEN1, which is shown in Fig. 8. For changes in surface 
O3, the differences are statistically significant over land 
where the absolute changes are larger than 2 ppb, along or 
near the coast (e.g., eastern Florida coast and Gulf coast) 
where the absolute changes are larger than 1 ppb, and over 
most oceanic areas (e.g., western Atlantic Ocean). The 
changes in surface O3 mixing ratios are directly related to 
the changes in surface and boundary layer properties, which 
are impacted through coupling of air-sea interactions. The 
impacts from coupling ROMS with WRF-Chem are nonlinear 
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Fig. 8. Student’s t-test for differences in monthly-averaged surface concentrations of O3 and PM2.5 between SEN3 
(WRF/Chem coupling with 3-D regional ocean model) and SEN1 (WRF/Chem standalone without ocean coupling). The 
shaded areas indicate the differences are statistically significant at the confidence level of 95%. 

 

and complex. For example, the significant decreases in 
surface O3 concentration (e.g., > 5 ppb) over western Atlantic 
Ocean are likely due to the changes in turbulent fluxes, 
driven by differences in temperature and humidity between 
air and sea interfaces through coupling air-sea interactions. 
In addition, the impacts of air-sea interactions on meteorology 
can also affect O3 concentrations through chemical 
transformation (e.g., photochemical oxidation, nighttime 
chemistry, and other kinetic reactions) and physical processes 
(e.g., deposition and transport). For example, changes in 
shortwave radiation induced by coupling air-sea interaction 
can affect the photolysis of NO2, which is a major O3 
precursor. Changes in temperature and humidity can affect 
O3 involved kinetic reactions (e.g., the reaction of volatile 
organic compounds with O3). For changes in surface PM2.5, 
the differences are statistically significant over land where 
the monthly mean absolute changes are larger than 1 µg m–3, 
along or near the coast (e.g., Gulf coast and northeast coast) 
where the absolute changes are larger than 1 µg m–3, and 
over remote oceanic area (e.g., middle Atlantic Ocean). 
Similar to changes in surface O3, the changes in surface 
PM2.5 are also driven by the changes in chemical, dynamic, 
and thermodynamics processes through air-sea interactions. 
Changes in surface temperature and radiation can result in 
changes in secondary aerosol formation. For example, the 
temperature-dependent reaction of SO2 with OH can 
produce H2SO4 and therefore sulfate in the particulate phase. 
Changes in radiation can lead to changes in predicted OH 
radical, which can affect the formation of secondary organic 
aerosol. Changes in large-scale circulation can lead to 
horizontal transport of gases and aerosols. In addition, 
changes in precipitation can also affect PM concentrations 
through wet scavenging. These results indicate clearly the 

impacts from coupling ROMS with WRF-Chem.  
Figs. 9(a) and 9(b) show the time series observations 

and model predictions over coastal sites from CASTNET, 
IMPROVE, and AIRS-AQS for surface max 8-h mixing 
ratios of O3 and 3-day averaged PM2.5. Compared to SEN1, 
the differences in Max 8-h O3 can be as large as about 15 
ppb at the CASTNET sites. Max 8-h O3 mixing ratios 
predicted by SEN1, SEN2, and SEN3 overall correlate 
well with observations at the CASTNET sites, with a better 
performance by SEN3 at sites BFT142 and IRL141. 
Compared to SEN1, the differences in Max 8-h O3 mixing 
ratios can be as large as about 20 ppb at the AQS sites. 
Max 8-h O3 mixing ratios by SEN3 are large overpredicted 
by three simulations at the AQS sites such as Holiday, FL 
(121012001) and Gulfport Youth Court, MS (280470008). 
Due to the relatively coarse grid resolution used in this work, 
the model shows some difficulties in capturing the observed 
temporal variations of O3 during some time periods at some 
sites (e.g., overpredictions at Holiday, FL during most days, 
and at Gulfport Youth Court after July 15). However, 
compared to SEN1, SEN3 can capture temporal variations 
of max 8-h O3 much better especially at Beaufort (BFT142) 
and Indian River Lagoon (IRL141) sites (e.g., from July 16 
to Jul 31, 2010). As shown in Fig. 9(b), PM2.5 is overall well 
predicted at the IMPROVE and AQS sites. Compared to 
SEN1, the differences in surface PM2.5 predictions by SEN3 
can be as large as about 15 µg m–3 at the IMPROVE sites 
and as large as about 6 µg m–3 at the AQS sites. In general, 
SEN3 predicts better magnitudes and temporal variations 
of PM2.5 concentrations compared to SEN1, especially at 
the four sites: CHAS1, ROMA1, EVER1, and SWAN1.  

Fig. 10 shows the scatter plots for major chemical 
species over various observational networks. Compared to
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Beaufort (BFT142), NC (34.88, –76.62), CASTNET Holiday (121012001), FL (28.20, –82.76), AQS 

Blackwater NWR (BWR139), MD (38.44, –76.11), 
CASTNET 

St. Marks Wildlife Refuge (121290001), FL (30.09, –84.16), 
AQS 

Indian River Lagoon (IRL141), FL (27.85, –80.46), 
CASTNET 

Gulfport Youth Court (280470008), MS (30.39, –89.05), 
AQS 

Fig. 9(a). Maximum 8-h O3 at 6 sites, including 3 from CASTNET, and 3 from AIRS-AQS. The black markers represent 
observations. The purple, blue, and red lines represent simulated results from SEN1 (WRF/Chem standalone without 
coupling ocean model), SEN2 (WRF/Chem coupling with 1-D ocean mixed layer model), and SEN3 (WRF/Chem 
coupling with 3-D ROMS), respectively. 

 

SEN1, SEN3 predicts overall better chemical concentrations 
in terms of both NMB and R values. For example, the 
surface predictions of gaseous species such as SO2 and 
HNO3 are improved by reducing NMBs from 204.5% to 
192.1%, and from 92.4% to 85.1%, respectively. The hourly 
O3 prediction is slightly improved by reducing NMBs from 
27.3% to 26.4% at the AIRS-AQS sites. The predictions of 
max 1-h and 8-h O3 mixing ratios are also improved by 
reducing NMBs from 3.0% to 2.1% against CASTNET 
(from 15.6% to 14.8% against AIRS-AQS), and from 13.2% 
to 12.2% against CASTNET (20.0 to 19.2% against AIRS-
AQS), respectively. Model predictions of aerosol species 

such as SO4
2–, NH4

+, and NO3
– are slightly or moderately 

improved against STN observations. The concentrations of 
Na+ and Cl– are largely underpredicted in both SEN1 and 
SEN3, indicating the uncertainties in the online sea-salt 
emission modules. In SEN3, the model performance of EC 
is slightly improved at the IMPROVE sites but slightly 
degraded at the SEARCH sites, whereas the model 
performance of OC and TC is slightly degraded at the 
IMPROVE sites but slightly improved at the SEARCH 
sites. PM2.5 prediction is slightly improved in SEN3 at the 
IMPROVE sites, but degraded at the STN sites. PM10 
prediction is also slightly improved in SEN3. The large
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Chassahowitzka (CHAS1), FL (28.75, –82.56), IMPROVE Everglades (EVER1), FL (25.39, –80.68), IMPROVE 

Brigantine (BRIG1), NJ (39.47, –74.45), IMPROVE St. Marks (SAMA1), FL (30.09, –84.16), IMPROVE 

Cape Romain (ROMA1), SC (32.94, –79.66), IMRPOVE Swanquarter (SWAN1), NC (35.45, –76.21), IMPROVE

Fig. 9(b). Three-day averaged surface PM2.5 concentrations at 6 sites from IMRPOVE. The black markers represent 
observations. The purple, blue, and red markers represent simulated results from SEN1 (WRF/Chem standalone without 
coupling ocean model), SEN2 (WRF/Chem coupling with 1-D ocean mixed layer model), and SEN3 (WRF/Chem 
coupling with 3-D ROMS), respectively. 

 

underpredictions of PM10 are likely due to the inaccurate 
predictions of sea-salt concentrations and the overpredictions 
of precipitation over land (e.g., intensity and duration).  

The model performance for column concentrations and 
AOD predictions is shown in Fig. 11. The predicted column 
concentrations of NO2, CO, SO2, and TOR are comparable 
in SEN1 and SEN3. The coupling of WRF/Chem with 
ROMS affects boundary layer more significantly than upper 
layers. As shown in Fig. 11, TOR is reasonably predicted 
by SEN1 and SEN3, with NMBs of 15.6%, and 17.5%, 
respectively. However, both SEN1 and SEN3 simulations 
moderately or largely overpredict column CO and NO2. 

Unlike the predictions of column CO and NO2, column 
SO2 is largely underpredicted by SEN1 and SEN3, with 
NMBs of –61.2% and –61.1%, respectively. The inaccurate 
predictions of total column of CO, NO2, and SO2 could be 
mainly attributed to the uncertainties in the total CO, NOx, 
and SO2 emissions, vertical distributions of emissions, as 
well as chemical reactions affecting those species. Compared 
to SEN1, SEN3 predicts slightly higher AOD up to 0.038, 
and slightly lower AOD up to 0.048. The higher AOD can 
be attributed to the higher aerosol concentrations due to 
less wet deposition in SEN3 since precipitation reduces 
largely in SEN3. Compared to MODIS data, both SEN1
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Fig. 10. Scatter plots of simulated vs. observed concentrations of major chemical species over different networks. SEN1: 
WRF/Chem standalone without coupling ocean model; SEN2: WRF/Chem coupling with 1-D ocean mixed layer model; 
SEN3: WRF/Chem coupling with 3-D ROMS. 

 

and SEN3 overpredict AOD over land by 1.5% and 3.5%, 
respectively, and underpredict AOD over ocean by 34.6% 
and 31.5%, respectively. The underpredictions of AOD over 
ocean are likely due to the inaccurate predictions of marine 
aerosols (e.g., sea-salt) and overpredictions of precipitation 
over ocean. A detailed model evaluation could be found in 
Table S1(b). 

Although the magnitudes of total column concentrations 
are not affected much by SEN3 compared to SEN1, the 
spatial distributions of some column species predicted by 
SEN3 can be affected through changes in large-scale 

circulation, temperature, radiation, as well as precipitation 
through the coupling of WRF/Chem with 3-D ROMS. Fig. 12 
shows the percentage differences for monthly-averaged 
column species between SEN3 and SEN1. Unlike the 
differences for column CO and O3, which are within ± 5%, 
there are much larger differences in the spatial distributions 
for column NO2, SO2, and PM2.5. For example, changes in 
column NO2, SO2, and PM2.5 can be as large as 16.7%, 
41.1%, and 31.1%, respectively. NO2 and SO2 can be 
oxidized to form HNO3 and H2SO4, respectively, which 
can further produce secondary NO3

– and SO4
2– through
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Fig. 11. The normalized mean bias (NMB, %) of column abundances of chemical species over the whole domain and 
AOD over land (left column) and ocean (right column) from SEN1 (WRF/Chem standalone, without coupling ocean 
model), SEN2 (WRF/Chem coupling with 1-D ocean mixing layer), and SEN3 (WRF/Chem coupling with 3-D ROMS).  

 

gas-particle conversion, and thus affect PM concentrations. 
These processes involve chemical transformation, and 
aerosol dynamics and thermodynamics, which are affected 
by induced changes in meteorology through the coupling 
of 3-D ROMS. For example, significant increases for 
column abundances (e.g., NO2, SO2, and PM) over ocean 
are mainly due to the less wet scavenging through decreased 
precipitation over ocean as well as more stable boundary 
conditions predicted by SEN3. The decreases of SO2 over 
land are likely due to more oxidation of SO2 by OH radicals 
as well as increases of wet deposition through increases in 
precipitation over land. The changes in column NO2 can 
also be attributed to changes in its reactions with volatile 
organic compounds through feedbacks on online biogenic 
emission calculations. The changes in column SO2 and 
NO2 could lead to changes in PM since they are gaseous 
precursors of NO3

– and SO4
2–. With the coupling of 3-D 

ROMS, the meteorological fields are affected, leading to 
changes in chemical transformations. These impacts are 
non-linear and complex, however, are non-negligible 
especially on regional scales.  

 
CONCLUSIONS 
 

In this work, 1-D OML and 3-D ROMS coupling with 
WRF/Chem are used to study the impacts of air-sea 
interactions on air quality predictions. With the inclusion 
of ocean coupling in SEN2 and SEN3, simulated boundary 
layer properties are changed. As OML is a simplified 1-D 
model with large uncertainty, the impacts on boundary 
layer are not as significant as those of the coupling of 
WRF/Chem with the 3-D ROMS, which consists of 
detailed primitive equations for 3-D ocean circulation and 
dynamics. Although SEN2 predicts SST, the coupling with 
the 1-D OML results in small changes in SST from the 
initial SST that is based on the NCEP reanalysis data. The 
warm bias of SST from SEN2 over Gulf Stream can 
generate larger monthly mean rainfall and surface latent 

heat flux anomalies compared to SEN3. However, in 
SEN3, SST is prognostic and affected by additional processes 
(e.g., horizontal advection and Ekman transport processes), 
and therefore shows larger changes. Although additional 
possible tuning in the parameters in the 1D-OML model 
could lead to larger impacts on SST, the impact is less 
physically compared to that from the 3D-ROMS model. 
The lower precipitation in SEN3 than SEN1 is probably 
due to the changes in moisture flux convergence through 
large-scale changes in the circulation field and SST. The 
predictions of precipitation, LHFXL, and SHFLX are 
improved significantly in SEN3, with NMBs significantly 
reduced from 211.5% in SEN1 to 119.2% in SEN3, from 
60.1% in SEN1 to 18.9% in SEN3, and from 138.2% in 
SEN1 to 50.2% in SEN3, respectively. However, compared 
to the observations of OAFlux, SST in SEN3 is slightly 
underpredicted with an NMB of –2.8%, which is mainly 
due to the lower initial conditions from global HYCOM 
data. Due to the improvement in the predictions of surface 
heat fluxes, PBLH predictions are also improved in SEN3, 
with NMBs reduced from 16.2% in SEN1 to –3.1% in 
SEN3 over ocean. Due to more stable boundary layer and 
less evaporation over ocean in SEN3, the predictions of 
most cloud variables such as CF, COT, and LWP over ocean 
are also improved in SEN3. As a result, the predictions of 
radiative variables such as SWD, OLR, SWCF, and LWCF 
over ocean are improved. 

Due to the changes in the boundary layer properties, 
surface chemical predictions are affected significantly in 
SEN3. For example, With the coupling of WRF/Chem 
with 1-D OML model, surface levels of O3 and PM2.5 can 
increase as large as 1.8 ppb and 1.0 µg m–3, and decreases 
as large as 1.4 ppb and 1.1 µg m–3, with a domain averaged 
increase of 0.03 ppb and 0.02 µg m–3, respectively. Through 
the coupling of WRF/Chem with the 3-D ROMS, surface 
O3 and PM2.5 concentrations can increase as large as 12.0 
ppb and 3.0 µg m–3, and decrease as large as 17.3 ppb and 
7.9 µg m–3, with a domain averaged decrease of 0.71 ppb
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SEN3 – SEN1 

 

 

 
Fig. 12. The percentage differences of monthly-averaged column abundances between SEN3 (WRF/Chem coupling with 
3-D ROMS) and SEN1 (WRF/Chem standalone without coupling ocean model). 
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and 0.08 µg m–3, respectively. The largest differences in 
surface O3 predictions are along the coastal areas and 
remote ocean, whereas the largest differences in surface 
PM2.5 predictions are not only along the coastal areas and 
remote ocean, but also over inland areas, indicating the 
significant impacts of air-sea interactions on chemical 
predictions. Compared to SEN1, SEN3 shows overall better 
performance for chemical concentrations of SO2, HNO3, 
Max 1-h and 8-h O3, SO4

2–, NH4
+, and NO3

–, and PM10. 
The simulated column concentrations are comparable in 
SEN1 and SEN3, with slightly better performance of column 
SO2 in SEN3.  

There are several limitations in this work. First, cold 
biases exist in the SST simulated by WRF/Chem-ROMS. 
Using an alternative ICs and BCs for ROMS based on 
other ocean models, such as the Global Ocean Physical 
Reanalysis System (GLORS) (http://www.cmcc.it/it/models 
/c-glors-the-cmcc-global-ocean-physical-reanalysis-system) 
and the Simple Ocean Data Assimilation (SODA) 
(http://www.atmos.umd.edu/~ocean/data.html) may reduce 
such cold biases in SST, which will in turn improve 
meteorological and chemical predictions of WRF/Chem-
ROMS. Second, large biases remain in the predictions of 
some meteorological (e.g., WS10 over land and precipitation 
over ocean) and cloud variables (e.g., COT, CDNC, LWP, 
and SWCF), indicating the uncertainties in the model 
representations of boundary layer, convection, cloud 
dynamics and thermodynamics, as well as aerosol-cloud 
interactions. Those are the research areas that may lead to 
improved model performance for future work. Finally, 
when computational resources become available, finer grid 
resolution (e.g., 1–4 km) may be applied in the future to 
better capture the fine-scale features along the coast. 
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