Jie Ma1,2, Yiran Sun1, Jinhu Yang3, Zichen Lin1, Qianying Huang1, Tian Ou1, Fei Yu 2,4

  • 1 State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • 2 College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 2001418, China
  • 3 School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
  • 4 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China

Received: July 14, 2016
Revised: December 10, 2016
Accepted: December 22, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2016.07.0312  


Cite this article:
Ma, J., Sun, Y., Yang, J., Lin, Z., Huang, Q., Ou, T. and Yu, F. (2017). High-Performance Amino-Functional Graphene/CNT Aerogel Adsorbent for Formaldehyde Removal from Indoor Air. Aerosol Air Qual. Res. 17: 913-922. https://doi.org/10.4209/aaqr.2016.07.0312


HIGHLIGHTS

  • A flexible approach prepares amino-functional graphene/CNT aerogels.
  • The breakthrough time presents a big increase (from 390 to 20300 min g–1).
  • The adsorption mechanism of formaldehyde was also studied.
  • ACGAs offers application prospects in the other indoor pollutant removal.

 

ABSTRACT


A flexible approach prepares amino-functional graphene aerogels with different additions of carbon nanotubes (CNTs) for use as an adsorbent to study the adsorption performance of formaldehyde in indoor air. Experimental results indicated that the decoration of amino groups offers a greater number of chemical adsorption sites, which mainly contributed to the improvement of the chemical adsorption capacity of graphene aerogels, and the breakthrough time increased from 0 to 390 min g–1 under 3.7 ppm of formaldehyde. The addition of CNTs can significantly enhance the adsorption properties. More interestingly, the breakthrough time presents a substantial increase from 390 to 20,300 min g–1 when the mass ratio of CNTs and graphene increased from 0:1 to 2:1 and then decreased to 18,000 min g–1 at the ratio of 3:1. The addition of CNTs weakens the agglomeration degree and achieves a greater number of adsorption sites by playing a supportive and connective role among graphene sheets. However, more CNTs will agglomerate, and fewer functional groups on the surface limit additional amounts. The adsorption mechanism was also studied by analyzing the surface specific area and N content. This work provides new insights into the application of amino-functional graphene aerogels with the additions of CNTs (AGCAs) as a potential adsorbent to eliminate indoor formaldehyde pollution. 


Keywords: Graphene; Formaldehyde; Carbon nanotube; Aerogel; Adsorbent


Share this article with your colleagues 

 

Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

7.3
2022CiteScore
 
 
77st percentile
Powered by
Scopus
 
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.