Kuo-Lin Huang 1, Ming-Sheng Wu1, Jen-Hsiung Tsai1, Ding-Yan Lin1, Shui-Jen Chen1, Wen-Jhy Lee2

  • 1 Department of Environmental Engineering and Science, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
  • 2 Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan

Received: July 6, 2016
Revised: August 18, 2016
Accepted: August 19, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2016.06.0280  

  • Download: PDF

Cite this article:
Huang, K.L., Wu, M.S., Tsai, J.H., Lin, D.Y., Chen, S.J. and Lee, W.J. (2016). Effect of Operating Conditions on PAHs Emission from a Single H2-O2 PEM Fuel Cell. Aerosol Air Qual. Res. 16: 2186-2197. https://doi.org/10.4209/aaqr.2016.06.0280


  • The emitted Total-PAHs sum concentration increases at anode/cathode gas flowrates ≠ 52/35 sccm.
  • The emitted Total-PAHs sum concentration decreases with increasing sampling time.
  • 64% of PAH mass is emitted within two-thirds of sampling time.
  • The temperature of PEMFC slightly influences the PAH emission.
  • The Total-PAHs emission factors follows the order SGL > E-TEK > E-TEK2 > GORE.



This study investigates the emissions of polycyclic aromatic hydrocarbons (PAHs) from a single hydrogen-oxygen proton exchange membrane (PEM) fuel cell (FC) under different flowrates, temperatures, sampling periods, and membrane-electrode assemblies (MEAs). The results show that Nap, PA, BeP, FL, Pyr, BbC, Ant, and Flu were dominant in anode and cathode emissions of the single PEMFC under different operating conditions. The emission concentrations of Total-PAHs and Total-BaP equivalent carcinogenic potency (BaPeq) were lower from the anode than from the cathode emission. Moreover, the concentrations of molecular-weight (MW) classified PAHs were in the order low (L) MM- > high (H) MW- > middle (M) MW-PAHs. When the anode/cathode gas flowrates were greater or smaller than 52/35 sccm but at the same sampling volume, the emission concentrations of Total-PAHs and Total-BaPeq increased. The concentration of Total-PAHs decreased but the mass of Total-PAHs increased with the increase of sampling time. However, 64% and 82% of PAH mass were emitted within 12 and 24 h, respectively, based on 36 h sampling at anode/cathode gas flowrates = 52/35 sccm. The concentrations of Total-PAHs or Total-BaPeq of anode or cathode emission were slightly higher at 90°C than at 65°C.

The performances of commercial MEAs were in the order SGL < E-TEK < GORE. Nevertheless, the concentrations of anode or cathode emission Total-PAHs or Total-BaPeq for the PEMFC using different MEAs followed the order GORE > E-TEK2 > E-TEK > SGL, while the sums of anode and cathode Total-PAHs emission factors varied with the order SGL > E-TEK > E-TEK2 > GORE (13.3 ± 0.55, 11.5 ± 0.21, 7.91 ± 0.47, and 3.17 ± 0.22 µg g–1-MEA, respectively). When using the (lab-made) E-TEK2 as the MEA of PEMFC, the PAH profiles of anode and cathode emission gases were similar to those of some carbon materials.

Keywords: Polycyclic aromatic hydrocarbon; Proton exchange membrane fuel cell; Emission factor

Don't forget to share this article 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

Latest coronavirus research from Aerosol and Air Quality Research

2018 Impact Factor: 2.735

5-Year Impact Factor: 2.827

SCImago Journal & Country Rank

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal, promotes submissions of high-quality research, and strives to be one of the leading aerosol and air quality open-access journals in the world.