Jiung-Wen Chen1, Grace Whei-May Lee 1, Kai-Jie Chen1, Shin-Hao Yang2

  • 1 Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
  • 2 Department of Nutritional Science, Toko University, Chiayi County 61363, Taiwan

Received: June 1, 2016
Revised: August 9, 2016
Accepted: August 9, 2016
Download Citation: ||https://doi.org/10.4209/aaqr.2016.06.0224  

  • Download: PDF

Cite this article:
Chen, J.W., Lee, G.W.M., Chen, K.J. and Yang, S.H. (2016). Control of Bioaerosols in Indoor Environment by Filter Coated with Nanosilicate Platelet Supported Silver Nanohybrid (AgNPs/NSP). Aerosol Air Qual. Res. 16: 2198-2207. https://doi.org/10.4209/aaqr.2016.06.0224


  • Development of antimicrobial air filter using AgNPs/NSP with low toxicity.
  • Evaluation of antimicrobial effect by filtration test and HVAC simulation system.
  • Comparison of antimicrobial effect between two different relative humidity.



Currently silver nanoparticles (AgNP)-modified filter are widely used to inactivate airborne microbes in indoor environment. However, AgNP is extremely small and thus will penetrate cells membranes to cause cytotoxicity. AgNPs/NSP has been proven to be less cytotoxic to human body. In this study, it was the first time that AgNPs/NSP was used to develop a new antimicrobial air filter with low cytotoxicity. The AgNPs/NSP filter was made by dip-coating of filter with AgNPs/NSP and acrylic resin solution and three different amount of silver on filter were obtained including 12.6, 31.5 and 63 ppm. The filtration efficiency and the antimicrobial activity of AgNP/NSP filter were evaluated by bioaerosols including Escherichia coli and Candida famata in testing chamber and HVAC simulation system under 30% and 70% relative humidity (RH). The results showed that filtration efficiency of AgNPs/NSP-modified filter increased by about 13 to 20% compared to unmodified filter for E. coli but remained almost the same for C. famata. The antimicrobial efficiency of AgNPs/NSP modified filter of 63 ppm was 95.1% for E. coli at RH of 30%. In addition, 91% of antimicrobial efficiency for C. famata was found at RH of 70%. On the other hand, the antimicrobial efficiency of yeast for AgNPs/NSP-modified filter was 97.8% and 86.4% for RH of 30% and 70% respectively when yeast just started to contact with filter in HVAC system. The results suggest that AgNP/NSP-modified air filter can effectively inactivate microorganisms retained on. Therefore, emission of bioaerosols from air filter can be avoided in order to improve the air cleaning technology in indoor environment.

Keywords: Silver nanoparticles; Filtration; Antimicrobial activity; Airborne microbes; Antimicrobial filter

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.