Nidhi Verma, Aparna Satsangi, Anita Lakhani, K. Maharaj Kumari

  • Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282110, India

Received: May 23, 2016
Revised: July 25, 2016
Accepted: February 2, 2017
Download Citation: ||  

Cite this article:
Verma, N., Satsangi, A., Lakhani, A. and Kumari, K.M. (2017). Low Molecular Weight Monocarboxylic Acids in PM2.5 and PM10: Quantification, Seasonal Variation and Source Apportionment. Aerosol Air Qual. Res. 17: 485-498.


  • Monocarboxylic acids along with carbonaceous and major ions were analysed.
  • High concentrations of both acetic and formic acid were observed in winter.
  • F/A > 1 which indicates primary emissions are dominant.
  • CH3COOH is mainly from primary sources while HCOOH is from secondary sources.



PM2.5 and PM10 aerosols from a semi-urban site of Agra (27°10′N, 78°05′E) in North-Central India were analyzed for carbonaceous aerosols (Organic and Elemental carbon), low molecular weight monocarboxylic acids (Acetic and Formic acid) along with inorganic ions (Cl, NO3, SO42–, K+ and Ca2+) during April 2014 to August 2015. The average PM2.5 and PM10 mass concentrations were 86.3 ± 71.3 and 169.7 ± 100.5 µg m–3, respectively; about 45% of PM2.5 and 67% of PM10 samples were above NAAQ (National Ambient Air Quality) standards. The average organic carbon (OC) and elemental carbon (EC) concentrations were 18.2 ± 12.3 and 6.7 ± 4.5 µg m–3, respectively in PM2.5 and 25.2 ± 14.1 and 8.1 ± 5.9 µg m–3 respectively in PM10. The average concentration of acetic acid (AA) in PM2.5 and PM10 were 330 ± 211 and 392 ± 224 ng m–3 respectively. The average concentration of formic acid (FA) in PM2.5 and PM10 were 348 ± 193 and 336 ± 175 ng m–3 respectively. Formic acid concentration was higher in PM2.5 than PM10 but the difference is not statistically significant. Both AA and FA showed similar seasonal variation: winter > post-monsoon > summer > monsoon. Low temperature and high relative humidity in winter season favours gas to particle conversion resulting in high concentrations. The average FA to AA (F/A) ratio was 0.69 indicating dominance of primary sources at the study site. Correlation analysis of AA and FA with major ions (Cl, NO3, SO42–, K+ and Ca2+), EC, secondary organic carbon and trace gases (O3 and CO) was performed to identify their primary or secondary origin. The results of correlation analysis suggest that AA is mainly contributed by primary sources while FA originates from secondary sources.

Keywords: Carboxylic acid; PM2.5; PM10; Primary sources; Secondary sources

Share this article with your colleagues 


Subscribe to our Newsletter 

Aerosol and Air Quality Research has published over 2,000 peer-reviewed articles. Enter your email address to receive latest updates and research articles to your inbox every second week.

77st percentile
Powered by
   SCImago Journal & Country Rank

2022 Impact Factor: 4.0
5-Year Impact Factor: 3.4

Aerosol and Air Quality Research partners with Publons

CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit
CLOCKSS system has permission to ingest, preserve, and serve this Archival Unit

Aerosol and Air Quality Research (AAQR) is an independently-run non-profit journal that promotes submissions of high-quality research and strives to be one of the leading aerosol and air quality open-access journals in the world. We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.